Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The RNA-binding protein TRIM71 is essential for brain development, and recent genetic studies in humans have identified as a risk gene for congenital hydrocephal-us (CH). Here, we show that monoallelic missense mutations in are associated with hearing loss (HL) and inner ear aplasia in humans. Utilizing conditional knockout mice carrying a CH and HL-associated mutation, we demonstrate that loss of TRIM71 function during early otic development (embryonic day 9 to 10) causes severe HL. While inner ear morphogenesis occurs normally in knockout mice, we find that early otic loss of TRIM71 function disrupts the highly stereotyped timing of cell cycle exit and differentiation within the inner ear auditory sensory organ (cochlea), resulting in the premature formation and innervation of mechanosensory hair cells. Transcriptomic profiling of -deficient cochlear progenitor cells identifies and as targets of TRIM71 repression, and our analysis of double knockout mice indicates that TRIM71 maintains hair cell progenitors in a proliferative and undifferentiated state by restricting TGFβ-type signaling. Characterization of hair cells and their associated neurons in adult knockout mice revealed reduced presynaptic terminals and neuronal degeneration in the outer hair cell region, providing a basis for the observed hearing deficits in knockout mice.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2505811122DOI Listing

Publication Analysis

Top Keywords

knockout mice
20
inner ear
12
rna-binding protein
8
protein trim71
8
trim71 essential
8
auditory sensory
8
sensory organ
8
loss trim71
8
trim71 function
8
early otic
8

Similar Publications

Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).

View Article and Find Full Text PDF

Introduction: Knockout of the Fmo5 gene in mice led to a lean, slow-ageing phenotype characterised by the presence of 2,3-butanediol isomers in their urine and plasma. Oral treatment of wildtype mice with 2,3-butanediol led to a low cholesterol, low epididymal fat phenotype.

Objectives: Determine if significant, heterozygous coding variations in human FMO5 would give rise to similar clinical and metabolic phenotypes in humans, as in C57BL/6J mice with knockout of the Fmo5 gene and in particular, increased excretion of 2,3-butanediol.

View Article and Find Full Text PDF

Hic-5 deficiency attenuates MAFLD by inhibiting neutrophils migration via the CXCL1-CXCR2 axis.

J Gastroenterol

September 2025

Department of General Surgery (Hepatopancreatobiliary Surgery), Department of Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.

Background And Aims: Inflammatory cell infiltration in the liver is a hallmark of metabolic dysfunction-associated fatty liver disease (MAFLD). However, the pathological events that trigger the infiltration of inflammatory cells to mediate MAFLD pathogenesis remains poorly understood. This study aims to investigate the function and mechanism of Hic-5 on hepatic inflammation of MAFLD.

View Article and Find Full Text PDF

Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.

View Article and Find Full Text PDF

ATG16L1 controls mammalian vacuolar proton ATPase.

J Cell Biol

October 2025

Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.

The mechanisms governing mammalian proton pump V-ATPase function are of fundamental and medical interest. The assembly and disassembly of cytoplasmic V1 domain with the membrane-embedded V0 domain of V-ATPase is a key aspect of V-ATPase localization and function. Here, we show that the mammalian protein ATG16L1, primarily appreciated for its role in canonical autophagy and in noncanonical membrane atg8ylation processes, controls V-ATPase.

View Article and Find Full Text PDF