Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pomegranate ( L.) is an important fruit crop, rich in fiber, vitamins, antioxidants, minerals and source of different biologically active compounds. The bacterial blight caused by pv. is a serious threat to the crop leading to 60-80% yield loss under epiphytotic conditions. In this work, we have generated comparative transcriptome profile to mark the gene expression signatures during resistance and susceptible interactions. We analyzed leaf and fruits samples of moderately resistant genotype (IC 524207) and susceptible variety (Bhagawa) of pomegranate at three progressive infection stages upon inoculation with the pathogen. RNA-Seq with the Illumina HiSeq 2500 platform revealed 1,88,337 non-redundant (nr) transcript sequences from raw sequencing data, for a total of 34,626 unigenes with size >2 kb. Moreover, 85.3% unigenes were annotated in at least one of the seven databases examined. Comparative analysis of gene-expression signatures in resistant and susceptible varieties showed that the genes known to be involved in defense mechanism in plants were up-regulated in resistant variety. Gene Ontology (GO) analysis successfully annotated 90,485 pomegranate unigenes, of which 68,464 were assigned to biological, 78,107 unigenes molecular function and 44,414 to cellular components. Significantly enriched GO terms in DEGs were related to oxidations reduction biological process, protein binding and oxidoreductase activity. This transcriptome data on pomegranate could help in understanding resistance and susceptibility nature of cultivars and further detailed fine mapping and functional validation of identified candidate gene would provide scope for resistance breeding programme in pomegranate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714969PMC
http://dx.doi.org/10.1016/j.sjbs.2020.07.023DOI Listing

Publication Analysis

Top Keywords

comparative transcriptome
8
resistance susceptible
8
pomegranate
6
transcriptome profiling
4
profiling pomegranate
4
pomegranate genotypes
4
resistance
4
genotypes resistance
4
susceptible
4
susceptible reaction
4

Similar Publications

Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.

View Article and Find Full Text PDF

IFN-β, a type I interferon, has been used as a first-line therapy for patients with multiple sclerosis (MS) for more than 30 years; however, the cellular and molecular basis of its therapeutic efficacy remains unclear. Here, we first used experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, to show that the therapeutic effects of IFN-β were associated with a down-regulation of microRNA-21 (miR-21) and pathogenic T17 (pT17) cells. In vitro experiments demonstrated that genetic knockout of miR-21 directly inhibited pathogenic T17 cell differentiation.

View Article and Find Full Text PDF

Gene signatures predictive of chemotherapeutic response have the potential to extend the reach of precision medicine by allowing oncologists to optimize treatment for individuals. Most published predictive signatures are only capable of predicting response for individual drugs, but most chemotherapy regimens utilize combinations of different agents. We propose a unified framework, called the chemogram, that uses predictive signatures to rank the relative predicted sensitivity of different drugs for individual tumors.

View Article and Find Full Text PDF

Transcriptome analysis of shade-induced growth and photosynthetic responses in soybean cultivars.

PLoS One

September 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei

Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.

View Article and Find Full Text PDF

Microglia, the resident macrophages in the central nervous system (CNS), have been intensively studied using rodent genetic models, including the Cre-loxP system. Among them are tamoxifen (TAM)-inducible CX3C chemokine receptor 1 (Cx3cr1)-Cre mouse lines (Cx3cr1), which have enabled in-depth analyses of the biological features and functions of myeloid cells, including microglia. Occasionally, these Cx3cr1 tools have yielded conflicting biological outcomes, the underlying mechanism of which remains unclear.

View Article and Find Full Text PDF