Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As metabolic rewiring is crucial for cancer cell proliferation, metabolic phenotyping of patient-derived organoids is desirable to identify drug-induced changes and trace metabolic vulnerabilities of tumor subtypes. We established a novel protocol for metabolomic and lipidomic profiling of colorectal cancer organoids by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) facing the challenge of capturing metabolic information from a minimal sample amount (<500 cells/injection) in the presence of an extracellular matrix (ECM). The best procedure of the tested protocols included ultrasonic metabolite extraction with acetonitrile/methanol/water (2:2:1, ) without ECM removal. To eliminate ECM-derived background signals, we implemented a data filtering procedure based on the -value and fold change cut-offs, which retained features with signal intensities >120% compared to matrix-derived signals present in blank samples. As a proof-of-concept, the method was applied to examine the early metabolic response of colorectal cancer organoids to 5-fluorouracil treatment. Statistical analysis revealed dose-dependent changes in the metabolic profiles of treated organoids including elevated levels of 2'-deoxyuridine, 2'--methylcytidine, inosine and 1-methyladenosine and depletion of 2'-deoxyadenosine and specific phospholipids. In accordance with the mechanism of action of 5-fluorouracil, changed metabolites are mainly involved in purine and pyrimidine metabolism. The novel protocol provides a first basis for the assessment of metabolic drug response phenotypes in 3D organoid models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760698PMC
http://dx.doi.org/10.3390/metabo10120494DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
12
cancer organoids
12
metabolic
8
metabolic drug
8
drug response
8
novel protocol
8
organoids
5
response phenotyping
4
phenotyping colorectal
4
cancer
4

Similar Publications

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.

Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.

View Article and Find Full Text PDF

Exploring tumour-microbe interactions: in vitro and in vivo modelling of Streptococcus bovis-induced colorectal carcinogenesis.

Mol Biol Rep

September 2025

Department of Medical Microbiology and Parasitology, Faculty of Medicine, Selangor Branch, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Selangor, Malaysia.

Streptococcus bovis is an opportunistic bacterium consistently associated with colorectal cancer (CRC). This article reviews previous experimental evidence that has successfully demonstrated the role of S. bovis species in the context of CRC.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF

Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.

Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.

View Article and Find Full Text PDF