Wearable Bracelet Monitoring the Solar Ultraviolet Radiation for Skin Health Based on Hybrid IPN Hydrogels.

ACS Appl Mater Interfaces

Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The risk of extensive exposure of the human epidermis to solar ultraviolet radiation is significantly increased nowadays. It not only induces skin aging and solar erythema but also increases the possibility of skin cancer. Therefore, a simply prepared, highly sensitive, and optically readable device for monitoring the solar ultraviolet radiation is highly desired for the skin health management. Because of the photoinitiated polymerization triggered by graphene-carbon nitride (g-CN) under ultraviolet radiation, g-CN is homogeneously distributed in the hybrid hydrogels containing -isopropylacrymide (NIPAM), poly(ethylene glycol) methyl ether methacrylate (OEGMA), and sodium alginate (SA). By further immersing the hybrid hydrogels into calcium chloride solution, hybrid alginate-Ca/P(NIPAM--OEGMA)/g-CN interpenetrating polymeric network (IPN) hydrogels are obtained. Due to the homogeneous distribution of g-CN and the existence of thermoresponsive polymers, the hybrid IPN hydrogels present good adsorption capability and high degradation efficiency for methylene blue (MB) especially at high temperature under ultraviolet radiation. Based on this unique property, the bracelet monitoring skin health is prepared by simply immersing the hybrid IPN hydrogels into the MB solution and then wrapping it with PET foil. Because the immersion time for the top, middle, and bottom parts of the hybrid IPN hydrogels is gradually increased, their colors vary from light to dark blue. A longer time is required for the discoloration of the darker part under solar ultraviolet radiation. Thus, the bracelet can be used to conveniently monitor the dose of solar ultraviolet radiation by simply checking the discoloration in the bracelet under sunshine. Due to the facile preparation and low cost of the bracelet, it is a promising candidate for wearable devices for skin health management.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c17628DOI Listing

Publication Analysis

Top Keywords

ultraviolet radiation
28
solar ultraviolet
20
ipn hydrogels
20
skin health
16
hybrid ipn
16
bracelet monitoring
8
monitoring solar
8
health management
8
hybrid hydrogels
8
immersing hybrid
8

Similar Publications

Background: Ultraviolet-C (UV-C) radiation has emerged as a widely adopted disinfection technology in healthcare settings due to its germicidal effectiveness. However, concerns have grown regarding the potential degradation of materials, particularly polymeric surfaces, subjected to repeated UV-C exposure. Understanding the extent, mechanism, and contributing factors of UV-C-induced material degradation is essential for safe and sustainable implementation.

View Article and Find Full Text PDF

Introduction: Pilots have an increased incidence of cutaneous melanoma compared to the general population; occupational exposure to ultraviolet (UV) radiation is one of several potential risk factors. Cockpit windshields effectively block UVB (280-315 nm) but further analysis is needed for UVA (315-400 nm). The objective of this observational study was to assess transmission of UVA through cockpit windshields and to measure doses of UVA at pilots' skin under daytime flying conditions.

View Article and Find Full Text PDF

Starch-based biopolymer films with nitrogen-doped carbon quantum dots for enhanced barrier functions via surface microarchitectures.

Int J Biol Macromol

September 2025

Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:

This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.

View Article and Find Full Text PDF

Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.

View Article and Find Full Text PDF

Purpose: To analyze stabilization results using various standard and accelerated corneal cross-linking (CXL) protocols in patients younger than 18 years.

Methods: This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines. A bibliographic search was carried out based on PubMed and Scopus data, with the last being performed in December 2024.

View Article and Find Full Text PDF