Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents a new method for combined measurements of persistent luminescence (PersL), thermoluminescence (TL), and mechanoluminescence (ML) of luminescent materials in the micrometer scale. Both the hardware and software designs have been illustrated in detail, and the experimental procedures to execute the emission map, PersL, TL, and ML measurements have been demonstrated. The PersL, TL, and ML properties of the SrAlO:Eu, Dy micropowder, as well as the corresponding temperature variable emission spectra, have been measured. The results show good agreement with published investigations, indicating the accomplishment of designed functions. The instrument would be a powerful tool for exploring phosphorescent materials in the micrometer and smaller scales.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0011149DOI Listing

Publication Analysis

Top Keywords

persistent luminescence
8
thermoluminescence mechanoluminescence
8
materials micrometer
8
novel versatile
4
versatile instrument
4
instrument combined
4
combined studies
4
studies persistent
4
luminescence thermoluminescence
4
mechanoluminescence micro-scale
4

Similar Publications

Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.

View Article and Find Full Text PDF

Background: Recent advancements in cancer therapeutics have catalyzed the development of noninvasive treatment modalities, including the utilization of fluorescent chemotherapeutic agents. These agents offer dual functionality, enabling targeted drug delivery, real-time tumor imaging, and personalized therapy monitoring. Such capabilities are instrumental in the progression toward more precise and effective cancer interventions.

View Article and Find Full Text PDF

Amino-Functionalized Lanthanide Metal-Organic Frameworks for Ratiometric Detection of Perfluorooctanoic Acid.

ACS Appl Mater Interfaces

September 2025

School of Chemical Engineering and Technology, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, P. R. China.

Perfluorooctanoic acid (PFOA) is a persistent organic pollutant with a global presence in water, air, and soil resources. Herein, a water-stable amine-functionalized lanthanide metal-organic framework () is utilized for ratiometric luminescence detection of PFOA. In the presence of PFOA, there is an increase in the emission intensity of the organic ligand, while the characteristic luminescence intensity of Eu ions decreases, accompanied by a distinct emission color change from red to blue.

View Article and Find Full Text PDF

Sn-Mediated Trap Engineering in Cr-Activated Titanate Nanophosphors Enables Self-Sustained Multimodal Imaging and Combinatorial Oncotherapy.

Adv Mater

September 2025

National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology of National Development and Reform Commission, Department of Materials Science, School of Materials and Energy, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China.

Multimodal imaging provides comprehensive and precise tools that significantly increase the efficiency and accuracy in clinical decision-making. The integration of superior multimodal imaging capabilities with stimuli-responsive drug release functionalities within a single nanoplatform holds crucial promise for both scientific exploration and clinical translation but remains a formidable challenge in advancing precision medicine. The unique integration of near-infrared emission (λ = 760 nm), multiwavelength-rechargeable afterglow, photostimulated luminescence under 980 nm excitation, and Gd⁺-specific ferromagnetism is highlighted in NaGdTiO:Cr,Sn phosphor.

View Article and Find Full Text PDF

Low-temperature molten-salt enabled synthesis of highly-efficient solid-state emitting carbon dots optimized using machine learning.

Nat Commun

September 2025

Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, China.

Fluorescent carbon dots (CDs) have garnered significant attention for their unique optoelectronic properties and applications, but their practical employment is hampered by the excessive synthesis temperature, tedious post-processing and limited solid-state luminescence efficiency. Herein, we develop a facile molten salt method to achieve the one-step synthesis of full-color CDs with efficient solid-state emission. Comprehensively, kilogram-scale solid-state CDs with a quantum yield of 90% can be readily synthesized via a salt-assisted approach under mild conditions (100-142 °C) within 10 min.

View Article and Find Full Text PDF