98%
921
2 minutes
20
Background: Alzheimer's disease (AD) is an incurable neurodegenerative disease characterized by irreversible progressive cognitive deficits. Identification of candidate biomarkers, before amyloid-β-plaque deposition occurs, is therefore of great importance for early intervention of AD.
Objective: To investigate the potential non-invasive early biomarkers of AD in 5XFAD mouse model, we investigate the proteome of urinary exosomes present in 1-month-old (before amyloid-β accumulation) 5XFAD mouse models and their littermate controls. Another two groups of 2 and 6 months-old urinary samples were collected for monitoring the dynamic change of target proteins during AD progression.
Methods: Proteomic, bioinformatics analysis, multiple reaction monitoring (MRM), western blotting (WB) or ELISA were performed for analyzing these urinary exosomes.
Results: A total of 316 proteins including 44 brain cell markers were identified using liquid chromatography tandem mass spectrometry. Importantly, 18 proteins were unique to the 5XFAD group. Eighty-eight proteins including 11 brain cell markers were differentially expressed. Twenty-two proteins were selected to be verified by WB. Furthermore, based on an independent set of 12 urinary exosomes samples, five in these proteins were further confirmed significant difference. Notably, Annexin 2 and Clusterin displayed significant decreased in AD model during the course detected by ELISA. AOAH, Clusterin, and Ly86 are also brain cell markers that were first reported differential expression in urinary exosomes of AD model.
Conclusion: Our data demonstrated that some urinary exosome proteins, especially Annexin 2 and Clusterin, as nanometer-sized particles, enable detection of differences before amyloid-β-plaque deposition in 5XFAD mouse model, which may present an ideal non-invasive source of biomarkers for prevention of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674956 | PMC |
http://dx.doi.org/10.3389/fgene.2020.565479 | DOI Listing |
Clin Chim Acta
September 2025
Department of Physiology, University of Louisville, Louisville 40202 KY, USA. Electronic address:
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, with podocyte injury representing an early pathogenic event. Conventional biomarkers such as albuminuria and eGFR identify renal damage only at advanced stages, limiting opportunities for timely intervention. Wilms' Tumor 1 (WT1), a podocyte-specific transcription factor, has emerged as a sensitive marker of early glomerular stress.
View Article and Find Full Text PDFClin Transl Med
September 2025
Department of Cardiology, Guangzhou Red Cross Hospital of Ji-Nan University, Guangzhou, China.
Background: To investigate the role of self-peripheral blood mesenchymal stem cell (PBMSC)-derived exosomes (Exos) in enhancing renal sympathetic denervation (RD)-mediated heart regeneration following myocardial infarction (MI) in a porcine model.
Methods: Pigs (ejection fraction [EF] < 40% post-MI) were randomised to early sham RD or RD. At 2 weeks post-MI, autologous PBMSC-Exos were collected.
Clin Proteomics
August 2025
Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
Background: Small cell lung cancer (SCLC) is an aggressive malignancy with a poor prognosis. This study aimed to analyze the urinary exosomal proteome of SCLC patients to identify and validate potential non-invasive biomarkers for improving diagnosis, treatment response monitoring, and prognosis prediction.
Methods: We analyzed 90 urine samples from SCLC patients, divided into training (n = 38) and validation (n = 52) sets, including untreated, partial/complete remission, and relapsed groups.
J Proteome Res
September 2025
Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
Background: Podocytes injury drives proteinuria in diabetic kidney disease (DKD). Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs) have demonstrated therapeutic potential in kidney diseases. However, the effects of hUCMSCs on podocyte injury and the underlying mechanisms in DKD remain unexplored.
View Article and Find Full Text PDFStem Cell Res Ther
August 2025
Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, People's Republic of China.
Complicated urinary tract infection (cUTI), characterized by recurrent episodes due to multidrug-resistant bacterial infections and biofilm formation, severely compromises patients' quality of life. Although uropathogenic Escherichia coli remains the primary pathogen, its ability to form biofilms and induce persistent inflammatory responses exacerbates urothelial damage, thereby aggravating the disease. Current antibiotic treatments face resistance issues and inability to promote tissue repair, emphasizing the need for innovative treatments.
View Article and Find Full Text PDF