98%
921
2 minutes
20
Complicated urinary tract infection (cUTI), characterized by recurrent episodes due to multidrug-resistant bacterial infections and biofilm formation, severely compromises patients' quality of life. Although uropathogenic Escherichia coli remains the primary pathogen, its ability to form biofilms and induce persistent inflammatory responses exacerbates urothelial damage, thereby aggravating the disease. Current antibiotic treatments face resistance issues and inability to promote tissue repair, emphasizing the need for innovative treatments. Stem cell-derived exosomes have emerged as a promising solution for cUTI treatment due to their unique anti-inflammatory and tissue-repairing properties. In addition, advancements in targeted drug delivery and biomaterial integration have increased drug stability and therapeutic precision. These innovations have the potential to revolutionize the treatment of multidrug-resistant bacterial infections and the repair of complicated tissue damage, offering improved patient outcomes and addressing the limitations of traditional therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326798 | PMC |
http://dx.doi.org/10.1186/s13287-025-04548-3 | DOI Listing |
Regen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
Adv Sci (Weinh)
September 2025
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
Traumatic Brain Injury (TBI) is a common and debilitating injury, causing long-lasting neurological deficits. Current therapeies for recovery remain inadequate, undersing the urgent need for innovative interventions. In this study, a novel therapeutic approach is introduced that delivers extracellular vesicles (EVs) derived from human-induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) with a gelatin-based injectable bioorthogonal hydrogel (BIOGEL).
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
Purpose: Natural killer (NK) cell-derived extracellular vesicles (NK-EVs) have garnered significant research interest in the field of tumor immunotherapy. However, the large-scale production of NK-EVs remains a major challenge, limiting their clinical application. This study aims to develop a simple and efficient method for the preparation of NK cell-derived nanovesicles (NK-NVs) and to evaluate their cytotoxicity and drug delivery potential.
View Article and Find Full Text PDFFront Toxicol
August 2025
Ncardia Services B.V., Leiden, Netherlands.
Introduction: Efficient preclinical prediction of cardiovascular side effects poses a pivotal challenge for the pharmaceutical industry. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming increasingly important in this field due to inaccessibility of human native cardiac tissue. Current preclinical hiPSC-CMs models focus on functional changes such as electrophysiological abnormalities, however other parameters, such as structural toxicity, remain less understood.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2025
Institute of Biomedical Engineering, TU Dresden, Fetscherstr. 29, Dresden 01307, Germany.
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs.
View Article and Find Full Text PDF