98%
921
2 minutes
20
Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses. Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810662 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1284-20.2020 | DOI Listing |
Biochim Biophys Acta Mol Cell Res
September 2025
University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Metal Homeostasis, 1 Miecznikowa Str., 02-096, Warszawa, Poland. Electronic address:
The Natural Resistance Associated Macrophage Proteins (NRAMPs) are membrane-targeted transporters with low substrate specificity, that mediate the import (translocation to the cytoplasm) of metals, mainly essential nutrients, e.g. iron (Fe), manganese (Mn), zinc (Zn), cobalt (Co), copper (Cu) or nickel (Ni).
View Article and Find Full Text PDFBiomaterials
August 2025
Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Cen
Dental tissue regeneration is often challenged by the hostile inflammatory microenvironment and the dysfunction of reparative cells due to oxidative stress. This study presents a reactive oxygen species (ROS)-scavenging nanozyme induced by ligand-to-metal charge transfer, engineered as a multifunctional capping material through the in situ growth of copper-gallate (CuGA) on hydroxyapatite nanofibers (HAFs). The obtained CuGA@HAF demonstrates superior ROS-scavenging capacity through its multi-enzyme mimetic activity, effectively rescuing the function of dental pulp stem cells (DPSCs) under oxidative stress by restoring mitochondrial homeostasis.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
Iron homeostasis is essential for the virulence of the opportunistic fungal pathogen . The cytosolic monothiol glutaredoxin GrxD was recently shown to play a critical role in iron metabolism via regulation of iron-sulfur (Fe-S) binding iron-responsive transcription factors and interaction with components of the cytosolic Fe-S cluster assembly pathway. Interestingly, the putative copper-binding metallothionein CmtA was also identified as a binding partner for GrxD; however, the metal-binding properties of both proteins and the nature of their interactions were unclear.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China, School of Stomatology, Qingdao University, Qingdao, China.
Background: Chronic apical periodontitis (CAP) is a prevalent oral inflammatory disease, yet the complex mechanisms underlying its etiology remain unclear. A recently identified cell death pathway known as cuproptosis may be linked to this condition.
Methods: Differentially expressed cuproptosis-related genes (DE-CRGs) were identified by integrating human CAP dataset (GSE237398) with health control (HC) dataset (GSE223924) from the Gene Expression Omnibus (GEO) database.
Int J Biol Macromol
September 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) pose a significant threat to ecosystem security and human health. Laccase, a copper-containing oxidase, can oxidize aromatic compounds, potentially enhancing soil organic contaminants degradation and reducing secondary pollution risks in phytoremediation. However, the combined effects of laccase addition and soil temperature on phytoremediation efficiency remain underexplored.
View Article and Find Full Text PDF