Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFThe Fly-CURE is a genetics-focused multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on research experiences within a course. Through the Fly-CURE, undergraduate students at diverse types of higher education institutions across the United States map and characterize novel mutants isolated from a genetic screen in . To date, more than 20 mutants have been studied across 20 institutions, and our scientific data have led to eleven publications with more than 500 students as authors.
View Article and Find Full Text PDFThe Fly-CURE is a genetics-focused multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on research experiences within a course. Through the Fly-CURE, undergraduate students at diverse types of higher education institutions across the United States map and characterize novel mutants isolated from a genetic screen in . To evaluate the impact of the Fly-CURE experience on students, we developed and validated assessment tools to identify students' perceived research self-efficacy, sense of belonging in science, and intent to pursue additional research opportunities.
View Article and Find Full Text PDFMicroPubl Biol
March 2022
An EMS mutagenesis screen was conducted in to identify growth control mutants. The multi-institution Fly-CURE consortium phenotypically characterized the mutant using the system which displayed a mutant lethal phenotype with reduced head development, and darkened ocular tissue. Complementation mapping was conducted to identify the affected gene.
View Article and Find Full Text PDFAvian eggshell pigmentation may provide information about a female's physiological condition, in particular her state of oxidative balance. Previously we found that female house wrens ( Vieillot, 1809) with lighter, less-maculated, and redder ground-colored shells were older and produced heavier offspring than females laying darker, browner eggs. The strong pro-oxidant protoporphyrin is responsible for this species' eggshell pigmentation, so differences in pigmentary coloration may be related to eggshell protoporphyrin content and reflect female oxidative balance and condition during egg-formation.
View Article and Find Full Text PDFAs organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age-related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
MicroPubl Biol
July 2021
Genetic screens have been used to identify genes involved in the regulation of different biological processes. We identified growth mutants in a Flp/FRT screen using the eye to identify conditional regulators of cell growth and cell division. One mutant identified from this screen, , was mapped and characterized by researchers in undergraduate genetics labs as part of the Fly-CURE.
View Article and Find Full Text PDFAs organisms are constantly exposed to the damaging effects of oxidative stress through both environmental exposure and internal metabolic processes, they have evolved a variety of mechanisms to cope with this stress. One such mechanism is the highly conserved p38 MAPK (p38K) pathway, which is known to be post-translationally activated in response to oxidative stress, resulting in the activation of downstream antioxidant targets. However, little is known about the role of p38K transcriptional regulation in response to oxidative stress.
View Article and Find Full Text PDFDifferences in avian eggshell pigmentation could be an honest signal of female quality that males use to inform their nestling provisioning effort. We investigated whether among-individual variation in protoporphyrin-based eggshell pigmentation in house wrens () reflects female fitness-associated traits and whether males use that information. Females laying lighter clutches were older and larger than females laying darker clutches.
View Article and Find Full Text PDFDuring chemical transmission, the function of synaptic proteins must be coordinated to efficiently release neurotransmitter. Synaptotagmin 2, the Ca2+ sensor for fast, synchronized neurotransmitter release at the human neuromuscular junction, has recently been implicated in a dominantly inherited congenital myasthenic syndrome associated with a non-progressive motor neuropathy. In one family, a proline residue within the C2B Ca2+-binding pocket of synaptotagmin is replaced by a leucine.
View Article and Find Full Text PDFThe large repertoire of circadian rhythms in diverse organisms depends on oscillating central clock genes, input pathways for entrainment, and output pathways for controlling rhythmic behaviors. Stress-activated p38 MAP Kinases (p38K), although sparsely investigated in this context, show circadian rhythmicity in mammalian brains and are considered part of the circadian output machinery in Neurospora. We find that Drosophila p38Kb is expressed in clock neurons, and mutants in p38Kb either are arrhythmic or have a longer free-running periodicity, especially as they age.
View Article and Find Full Text PDFAtonal is a Drosophila proneural protein required for the proper formation of the R8 photoreceptor cell, the founding photoreceptor cell in the developing retina. Proper expression and refinement of the Atonal protein is essential for the proper formation of the Drosophila adult eye. In vertebrates, expression of transcription factors orthologous to Drosophila Atonal (MATH5/Atoh7, XATH5, and ATH5) and their progressive restriction are also involved in specifying the retinal ganglion cell, the founding neural cell type in the mammalian retina.
View Article and Find Full Text PDFDrosophila DIM-7 (encoded by the moleskin gene, msk) is the orthologue of vertebrate Importin-7. Both Importin-7 and Msk/DIM-7 function as nuclear import cofactors, and have been implicated in the control of multiple signal transduction pathways, including the direct nuclear import of the activated (phosphorylated) form of MAP kinase. We performed two genetic deficiency screens to identify deficiencies that similarly modified Msk overexpression phenotypes in both eyes and wings.
View Article and Find Full Text PDF