98%
921
2 minutes
20
Biochar addition can enhance plant growth and change soil physicochemical properties in saline soil. However, it is unclear whether the positioning of biochar additions (e.g., rhizosphere addition and surface addition) alters such impacts and whether such positioning effects interact with salinity levels. In the Yellow River Delta, China, we carried out a field experiment in which biochar was not added (control) or was added to the soil surface (surface addition) or to the soil at the rhizosphere position (rhizosphere addition) of Phragmites australis in three sites with different salt levels (1‰ - low, 5‰ - medium and 10‰ - high). Rhizosphere addition of biochar significantly improved the growth of P. australis, especially its fine root mass. Both rhizosphere addition and surface addition of biochar significantly decreased nitrate nitrogen content and electrical conductivity, and the inhibitory effects were more effective at the sites with medium and high salt levels in 2018. Structural equation modeling showed that biochar addition could directly increase the fine root mass of P. australis by decreasing the soil electrical conductivity, further improving the total mass of P. australis. Overall, rhizosphere addition of biochar is a better choice for improving the productivity of P. australis in saline soil and is beneficial to P. australis wetland restoration in the Yellow River Delta. Long-term field research is needed to better understand the effect and mechanism of biochar application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.143291 | DOI Listing |
Plant Signal Behav
December 2025
Faculty of Applied Ecology, Agricultural Science and Biotechnology, University of Inland Norway, Elverum, Norway.
Soil contamination with salinity and heavy metals such as cadmium (Cd) is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizobacteria PGPR and organic agents such as salicylic acid (SA) are considered major protectants to alleviate abiotic stresses, the study of these bacteria and organic acids to ameliorate the toxic effects of salinity and Cd remains limited. Therefore, the present study was conducted to investigate the individual and combined effects of PGPR and SA on enhancing the phytoremediation of salinity (100 mM NaCl) and Cd (50 µM CdCl₂) using rice ( L.
View Article and Find Full Text PDFSci Total Environ
September 2025
Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng yang 421001, Hunan, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun
Chelating agent contributes to the remediation of heavy metal contaminations, but it remains unclear how they affect the transformation of radioactive pollutants and microbial traits in phytoremediation. We comprehensively investigated on the uranium (U) speciation and microbial communities in the rhizosphere of Macleaya cordata, Paspalum scrobiculatum and Bamboo willow, and analyzed the accumulation of U in the three plants after the addition of chelating agents including 0.1 mmol kg siderophore (DFO) and 2.
View Article and Find Full Text PDFInt Microbiol
September 2025
Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
This study investigated the potential of native arbuscular mycorrhizal fungi (AMF) isolated from organic cassava fields as a biofertilizer, assessing their effects on cassava growth both alone and in combination with plant growth-promoting bacteria (PGPB). AMF spores were isolated from the rhizospheric soil of organic cassava field soils in northeastern Thailand and grouped into two consortia based on spore size: A45 and A75. Molecular identification revealed that both consortia were dominated by the genera Claroideoglomus and Entrophospora, with Paraglomus additionally present in the A45 consortium.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) pose a significant threat to ecosystem security and human health. Laccase, a copper-containing oxidase, can oxidize aromatic compounds, potentially enhancing soil organic contaminants degradation and reducing secondary pollution risks in phytoremediation. However, the combined effects of laccase addition and soil temperature on phytoremediation efficiency remain underexplored.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Electr
The role of microbial metagenomics in understanding ecological changes associated with rhizosphere heavy metal decontamination by plants has often been overlooked. The aim of this study was to scrutinize the structural, enzymological and metagenomic mechanisms leading to manganese (Mn) decontamination in the rhizosphere by Phytolacca icosandra. Seedlings of P.
View Article and Find Full Text PDF