Convergent Associative Motor Cortical Plasticity Induced by Conditional Somatosensory and Motor Reaction Afferents.

Front Hum Neurosci

Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Associative motor cortical plasticity can be non-invasively induced by paired median nerve electric stimulation and transcranial magnetic stimulation (TMS) of the primary motor cortex (M1). This study investigates whether a simultaneous motor reaction of the other hand advances the associative plasticity in M1. : Twenty-four right-handed subjects received conventional paired associative stimulation (PAS) and PAS with simultaneous motor reaction (PASmr) with at least a 1-week interval. The PASmr protocol additionally included left abductor pollicis brevis muscle movement responding to a digital sound. The motor reaction time was individually measured. The M1 excitability was examined by the motor evoked potential (MEP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) before and after the PAS protocols. : The conventional PAS protocol significantly facilitated MEP and suppressed SICI. A negative correlation between the reaction time and the MEP change, and a positive correlation between the reaction time and the ICF change were found in the PASmr protocol. By subgrouping analysis, we further found significant facilitation of MEP and a reduction of ICF in the subjects with fast reaction times but not in those with slow reaction times. : Synchronized motor reaction ipsilateral to the stimulated M1 induces associative M1 motor plasticity through the spike-timing dependent principle. MEP and ICF change could represent this kind of plasticity. The current findings provide a novel insight into designing rehabilitation programs concerning motor function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609873PMC
http://dx.doi.org/10.3389/fnhum.2020.576171DOI Listing

Publication Analysis

Top Keywords

motor reaction
20
associative motor
12
reaction time
12
motor
11
reaction
9
motor cortical
8
cortical plasticity
8
simultaneous motor
8
pasmr protocol
8
correlation reaction
8

Similar Publications

Neurological disorders are complex conditions characterized by impairment of the nervous system, affecting motor, cognitive, and sensory functions. Current treatments meet substantial obstacles, primarily due to the difficulty of transporting drugs across the blood-brain barrier and ineffective therapy for nerve regeneration. Emerging technologies, such as electrospinning, offer innovative solutions to overcome these challenges.

View Article and Find Full Text PDF

A Guillain Barre Syndrome (GBS): a case report.

Int J Emerg Med

September 2025

Department of Anesthesia, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.

View Article and Find Full Text PDF

Objective: Attention deficit hyperactivity disorder (ADHD) is linked to time perception deficits, with theories such as Scalar Expectancy Theory (SET) and Dynamic Attending Theory (DAT) offering different explanations. SET suggests time perception relies on a pacemaker-counter system influenced by working memory, whereas DAT highlights the role of attention in modulating time perception. This study examines the impact of attention, working memory, and motor response on time perception in children with ADHD.

View Article and Find Full Text PDF

Neurodegenerative diseases and spinal cord injuries (SCI) pose a significant burden on the healthcare system globally. Diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease precipitate cognitive, motor, and behavioral deficits. Parallelly, spinal cord injuries produce sensory and motor deficits, which are burdensome psychologically, socially, and economically.

View Article and Find Full Text PDF

Note: An Integrated Miniature Time-of-Flight Mass Spectrometer System with 3D Printing Assisted Design of Versatile Pocket-Size Laser-Induced Acoustic Desorption Source.

J Am Soc Mass Spectrom

September 2025

Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China.

An integrated miniature time-of-flight mass spectrometer (TOF-MS) system coupled with a pocket-size 3D-printed laser-induced acoustic desorption (LIAD) source is described. This 3D-printed LIAD source utilizes only a miniature deceleration motor to achieve two-dimensional motion of the target surface, simplifying the source structure and improving the long-term stability of mass spectrometry measurements. It has been successfully applied to analyze the model molecule creatinine and ingredients in an energy beverage (Red Bull), where main natural nutrients were clearly identified.

View Article and Find Full Text PDF