Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hyperuricemia is defined as a disease with high uric acid (UA) levels in the blood and a strong risk factor for gout. Urolithin A (UroA) is a main microbial metabolite derived from ellagic acid (EA), which occurs in strawberries and pomegranates. In this study, we evaluated antihyperuricemic effect of UroA in both cultured hepatocytes and hyperuricemic model mice. In cultured hepatocytes, UroA significantly and dose-dependently reduced UA production. In model mice with purine bodies-induced hyperuricemia, oral administration of UroA significantly inhibited the increase in plasma UA levels and hepatic xanthine oxidase (XO) activity. In addition, DNA microarray results exhibited that UroA, as well as allopurinol, a strong XO inhibitor, induced downregulation of the expression of genes associated with hepatic purine metabolism. Thus, hypouricemic effect of UroA could be, at least partly, attributed to inhibition of purine metabolism and UA production by suppressing XO activity in the liver. These results indicate UroA possesses a potent antihyperuricemic effect and it could be a potential candidate for a molecule capable of preventing and improving hyperuricemia and gout.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662530PMC
http://dx.doi.org/10.3390/molecules25215136DOI Listing

Publication Analysis

Top Keywords

cultured hepatocytes
12
model mice
12
purine metabolism
8
uroa
7
antihyperuricemic urolithin
4
urolithin cultured
4
hepatocytes model
4
mice hyperuricemia
4
hyperuricemia defined
4
defined disease
4

Similar Publications

Drug-induced liver injury prediction based on graph convolutional networks and toxicogenomics.

PLoS Comput Biol

September 2025

School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin, China.

Drug-induced liver injury is a leading cause of high attrition rates for both candidate drugs and marketed medications. Previous in silico models may not effectively utilize biological drug property information and often lack robust model validation. In this study, we developed a graph convolutional network embedded with a biological graph learning (BioGL) module-named BioGL-GCN(Biological Graph Learning-Graph Convolutional Network)-for drug-induced liver injury prediction using toxicogenomic profiles.

View Article and Find Full Text PDF

Background & Aims A hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD) is a decline in the ability of hepatocyte mitochondria to adapt to excess lipid. This leads to the production of reactive oxygen species (ROS) and the instigation of a vicious cycle of further mitochondrial damage and cellular dysfunction that promotes disease progression. In this study, we investigated whether induced pluripotent stem cells (iPSCs) from MASLD patients exhibit features of mitochondrial dysfunction when differentiated to hepatocyte-like cells (iPSC-Heps).

View Article and Find Full Text PDF

Background: A decellularized liver scaffold (DLS) is a three-dimensional acellular extracellular matrix created by removing cellular components from liver tissue. Hepatocellular carcinoma (HCC) organoids represent a useful experimental model.

Methods: HCC organoids from patient-derived xenografts (PDX), liver organoids, and HepG2 cells were expanded by cultivation within a murine DLS.

View Article and Find Full Text PDF

Background: Hepatitis D virus (HDV) infection is the most severe form of human viral hepatitis. A poor virus-specific CD8T cell response may result in persistent HDV infection. We investigated anti-viral effect and mechanisms of ubiquitinated small hepatitis D antigen (Ub-S-HDAg) in HBV/HDV superinfected liver organoids.

View Article and Find Full Text PDF

IL-4-mediated Pro-Regenerative Cellular Reprogramming in 3D Liver Culture.

Cell Mol Gastroenterol Hepatol

September 2025

Ajmera Transplant Centre, University Health Network, Toronto, ON; Department of Immunology, University of Toronto, Toronto, ON; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON. Electronic address:

Background & Aims: Interleukin-4 (IL-4) is a key contributor to liver regeneration but its effects remain poorly understood due to a lack of models that preserve the complex cellular interactions of the liver. Here, we use murine precision-cut liver slices (PCLS), a 3D tissue culture system that maintains both parenchymal and non-parenchymal cells, to investigate the role of IL-4 in hepatic cell reprogramming. Through longitudinal single-cell transcriptomics and protein-level validation, we demonstrate the pro-regenerative potential of IL-4.

View Article and Find Full Text PDF