Epigenetic Compound Screening Uncovers Small Molecules for Reactivation of Latent HIV-1.

Antimicrob Agents Chemother

Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During infection with the human immunodeficiency virus type 1 (HIV-1), latent reservoirs are established that circumvent full eradication of the virus by antiretroviral therapy (ART) and are the source for viral rebound after cessation of therapy. As these reservoirs are phenotypically indistinguishable from infected cells, current strategies aim to reactivate these reservoirs, followed by pharmaceutical and immunological destruction of the cells. Here, we employed a simple and convenient cell-based reporter system, which enables sample handling under biosafety level (BSL)-1 conditions, to screen for compounds that were able to reactivate latent HIV-1. The assay showed a high dynamic signal range and reproducibility with an average Z-factor of 0.77, classifying the system as robust. The assay was used for high-throughput screening (HTS) of an epigenetic compound library in combination with titration and cell-toxicity studies and revealed several potential new latency-reversing agents (LRAs). Further validation in well-known latency model systems verified earlier studies and identified two novel compounds with very high reactivation efficiencies and low toxicity. Both drugs, namely, -hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide (HPOB) and 2',3'-difluoro-[1,1'-biphenyl]-4-carboxylic acid, 2-butylhydrazide (SR-4370), showed comparable performances to other already known LRAs, did not activate CD4 T cells, and did not cause changes in the composition of peripheral blood mononuclear cells (PBMCs), as shown by flow cytometry analyses. Both compounds may represent effective new treatment possibilities for reversal of latency in HIV-1-infected individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927817PMC
http://dx.doi.org/10.1128/AAC.01815-20DOI Listing

Publication Analysis

Top Keywords

epigenetic compound
8
latent hiv-1
8
compound screening
4
screening uncovers
4
uncovers small
4
small molecules
4
molecules reactivation
4
reactivation latent
4
hiv-1 infection
4
infection human
4

Similar Publications

Perioperative neurocognitive disorders (PNDs) are common complications following surgery, especially in elderly patients, and are characterized by memory loss, attention deficits, and impaired executive function. The pathogenesis of PNDs involves a complex interplay of neuroinflammation, neurotransmitter imbalance, epigenetic modifications, and gut-brain axis disruption. This review summarizes the latest findings on the mechanisms underlying PNDs, with a focus on microglial activation, interleukin imbalance, and NLRP3 inflammasome-mediated pyroptosis.

View Article and Find Full Text PDF

Overcoming resistance in RET-altered cancers through rational inhibitor design and combination therapies.

Bioorg Chem

September 2025

Department of Pharmacy, Personalized Drug Research and Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

RET tyrosine kinase, a key regulator of cellular signaling, is abnormally activated due to mutations or fusions in various cancers, making it an important therapeutic target. Traditional multi-kinase inhibitors (MKIs, such as cabozantinib and vandetanib) exhibit significant side effects due to non-selective inhibition of targets like VEGFR, and also suffer from resistance associated with RET mutations (e.g.

View Article and Find Full Text PDF

Rare melanoma subtypes, including acral, mucosal, and uveal melanomas, exhibit limited responses to immune checkpoint inhibitors (ICIs), yet the molecular mechanisms of immune resistance remain poorly defined. Here, we performed transcriptomic profiling of patient-derived xenografts (PDXs) and publicly available tumor datasets to systematically compare intratumoral gene expression across cutaneous and rare melanoma subtypes. We identified a convergent downregulation of innate immune pathogen sensing (IIPS) and type I interferon signaling pathways in rare melanomas compared to cutaneous, with lower expression also observed in anti-PD-1 non-responder tumors.

View Article and Find Full Text PDF

Non-invasive bladder cancer detection: Identification of a urinary volatile biomarker panel using GC-MS metabolomics and machine learning.

Talanta

August 2025

Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal. Electronic address:

Early detection of bladder cancer (BC) remains a major clinical challenge due to the limitations of current diagnostic methods, which are often invasive, expensive, or insufficiently sensitive, particularly for early-stage disease. Metabolomics approaches, when integrated with machine learning (ML) techniques, offer a powerful platform for identifying novel, non-invasive biomarkers. In this study, urinary volatile organic compounds (VOCs) were analysed from 87 BC patients and 90 age- and sex-matched cancer-free controls using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS).

View Article and Find Full Text PDF

Alzheimer's disease (AD) remains a major neurodegenerative disorder characterized by progressive cognitive decline, amyloid- (Aβ) aggregation, tau pathology, oxidative stress, and chronic neuroinflammation. In recent years, the dietary flavonoid naringenin, abundant in citrus fruits, has gained attention as a multi-target neuroprotective agent with potential application in AD therapy. Preclinical studies demonstrate that naringenin exhibits robust antioxidant activity, notably through activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway, which reduces ROS and preserves mitochondrial integrity.

View Article and Find Full Text PDF