Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We describe here the design and implementation of an microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level. We validated barrier function of our brain microvessel-on-a-chip by measuring permeability of fluorescent dextran and a human monoclonal antibody. One potential application is to investigate mechanisms of transcytosis across the brain microvessel-like barrier of fluorescently-tagged biologics, viruses or nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576009PMC
http://dx.doi.org/10.3389/fbioe.2020.573775DOI Listing

Publication Analysis

Top Keywords

human brain
8
design
4
design validation
4
validation human
4
brain
4
brain endothelial
4
endothelial microvessel-on-a-chip
4
microvessel-on-a-chip open
4
open microfluidic
4
microfluidic model
4

Similar Publications

It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.

View Article and Find Full Text PDF

Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults.

View Article and Find Full Text PDF

A brake on the blink: EEG antecedents of movement suppression and urge to move.

Clin Neurophysiol

September 2025

Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Objective: To compare brain activity before voluntary movement and before the same movement when it was released from suppression. This study examined the Bereitschaftspotential (BP) and beta band event-related desynchronization (bERD) during active blink suppression, contrasting these with voluntary blinking, where these EEG correlates of motor preparation are well-established.

Methods: Fifteen healthy adults performed voluntary blink and blink suppression-release tasks with EEG recording.

View Article and Find Full Text PDF

Transdiagnostic homogeneity, and diagnostic-specific biomarkers among major depressive disorder, bipolar disorder and schizophrenia during 40 Hz auditory steady-state response: a normative modeling analysis.

J Affect Disord

September 2025

Tianjin University, Medical School, Tianjin, China; Tianjin University, Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; Tianjin University, State Key Laboratory of Advanced Medical Materials and Medical Devices, Tianjin, China.

Background: Abnormal gamma-band auditory steady-state response (gamma-ASSR) power has been reported in major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ), but distinguishing between these disorders based solely on power remains challenging. Directed functional connectivity (DFC), which captures topological patterns of causal information flow, may provide more diagnostic-specific markers. However, conventional case-control framework often disregards the substantial individual heterogeneity, yielding unreliable biomarkers.

View Article and Find Full Text PDF

Slow wave sleep is associated with a reorganisation of episodic memory networks.

Neuropsychologia

September 2025

Department of Experimental Psychology and Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United-Kingdom. Electronic address:

Models of memory consolidation propose that newly acquired memory traces undergo reorganisation during sleep. To test this idea, we recorded high-density electroencephalography (EEG) during an evening session of word-image learning followed by immediate (pre-sleep) and delayed (post-sleep) recall. Polysomnography was employed throughout the intervening night, capturing time spent in different sleep stages.

View Article and Find Full Text PDF