Publications by authors named "Birgit Obermeier"

The blood-brain barrier (BBB) is a highly specialized structure, constituted by endothelial cells that together with astrocytes and pericytes provide a functional interface between the central nervous system and the periphery. Several pathological conditions may affect its functions, and lately BBB involvement in the pathogenesis of Alzheimer's disease has been demonstrated. Both endothelial cells and astrocytes can be differentially affected during the course of the disease.

View Article and Find Full Text PDF

We describe here the design and implementation of an microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level.

View Article and Find Full Text PDF

Background: Receptor-mediated transcytosis is one of the major routes for drug delivery of large molecules into the brain. The aim of this study was to develop a novel model of the human blood-brain barrier (BBB) in a high-throughput microfluidic device. This model can be used to assess passage of large biopharmaceuticals, such as therapeutic antibodies, across the BBB.

View Article and Find Full Text PDF

Neuromyelitis optica (NMO) is an inflammatory disorder mediated by antibodies to aquaporin-4 (AQP4) with prominent blood-brain barrier (BBB) breakdown in the acute phase of the disease. Anti-AQP4 antibodies are produced mainly in the periphery, yet they target the astrocyte perivascular end feet behind the BBB. We reasoned that an endothelial cell-targeted autoantibody might promote BBB transit of AQP4 antibodies and facilitate NMO attacks.

View Article and Find Full Text PDF

Objective: To address the hypothesis that physiologic interactions between astrocytes and endothelial cells (EC) at the blood-brain barrier (BBB) are afflicted by pathogenic inflammatory signaling when astrocytes are exposed to aquaporin-4 (AQP4) antibodies present in the immunoglobulin G (IgG) fraction of serum from patients with neuromyelitis optica (NMO), referred to as NMO-IgG.

Methods: We established static and flow-based in vitro BBB models incorporating co-cultures of conditionally immortalized human brain microvascular endothelial cells and human astrocyte cell lines with or without AQP4 expression.

Results: In astrocyte-EC co-cultures, exposure of astrocytes to NMO-IgG decreased barrier function, induced CCL2 and CXCL8 expression by EC, and promoted leukocyte migration under flow, contingent on astrocyte expression of AQP4.

View Article and Find Full Text PDF

Oligoclonal Ig bands (OCBs) of the cerebrospinal fluid are a hallmark of multiple sclerosis (MS), a disabling inflammatory disease of the central nervous system (CNS). OCBs are locally produced by clonally expanded antigen-experienced B cells and therefore are believed to hold an important clue to the pathogenesis. However, their target antigens have remained unknown, mainly because it was thus far not possible to isolate distinct OCBs against a background of polyclonal antibodies.

View Article and Find Full Text PDF

In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS.

View Article and Find Full Text PDF

The ability of the Blood Brain Barrier (BBB) to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS) activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P.

View Article and Find Full Text PDF

Intrathecal oligoclonal bands of the cerebrospinal fluid are considered the most important immunological biomarkers of multiple sclerosis. They typically consist of clonally expanded IgG antibodies that underwent affinity maturation during sustained stimulation by largely unknown antigens. In addition, ∼40% of patients with multiple sclerosis have oligoclonal bands that consist of expanded IgM antibodies.

View Article and Find Full Text PDF

Background: In vitro blood-brain barrier (BBB) models can be useful for understanding leukocyte-endothelial interactions at this unique vascular-tissue interface. Desirable features of such a model include shear stress, non-transformed cells and co-cultures of brain microvascular endothelial cells with astrocytes. Recovery of transmigrated leukocytes for further analysis is also appealing.

View Article and Find Full Text PDF

The interface between the blood circulation and the neural tissue features unique characteristics that are encompassed by the term 'blood-brain barrier' (BBB). The main functions of this barrier, namely maintenance of brain homeostasis, regulation of influx and efflux transport, and protection from harm, are determined by its specialized multicellular structure. Every constituent cell type makes an indispensable contribution to the BBB's integrity.

View Article and Find Full Text PDF

In polymyositis and inclusion body myositis, muscle fibers are surrounded and invaded by CD8-positive cytotoxic T cells expressing the αβ-T cell receptor (αβ-TCR) for antigen. In a rare variant of myositis, muscle fibers are similarly attacked by CD8-negative T cells expressing the γδ-TCR (γδ-T cell-mediated myositis). We investigated the antigen specificity of a human γδ-TCR previously identified in an autoimmune tissue lesion of γδ-T cell-mediated myositis.

View Article and Find Full Text PDF

We investigated the overlap shared between the immunoglobulin (Ig) proteome of the cerebrospinal fluid (CSF) and the B cell Ig-transcriptome of CSF and the central nervous system (CNS) tissue of three patients with multiple sclerosis. We determined the IgG-proteomes of CSF by mass spectrometry, and compared them to the IgG-transcriptomes from CSF and brain lesions, which were analyzed by cDNA cloning. Characteristic peptides that were identified in the CSF-proteome could also be detected in the transcriptomes of both, brain lesions and CSF, providing evidence for a strong overlap of the IgG repertoires in brain lesions and in the CSF.

View Article and Find Full Text PDF

We describe a method for correlating the immunoglobulin (Ig) proteomes with the B cell transcriptomes in human fluid and tissue samples, using multiple sclerosis as a paradigm. Oligoclonal Ig bands and elevated numbers of clonally expanded B cells in the cerebrospinal fluid (CSF) are diagnostic hallmarks of multiple sclerosis. Here we compared the Ig transcriptomes of B cells with the corresponding Ig proteomes in CSF samples from four subjects with multiple sclerosis.

View Article and Find Full Text PDF