Publications by authors named "Srigokul Upadhyayula"

Understanding biological systems requires observing features and processes across vast spatial and temporal scales, spanning nanometers to centimeters and milliseconds to days, often using multiple imaging modalities within complex native microenvironments. Yet, achieving this comprehensive view is challenging because microscopes optimized for specific tasks typically lack versatility due to inherent optical and sample handling trade-offs, and frequently suffer performance degradation from sample-induced optical aberrations in multicellular contexts. Here, we present MOSAIC, a reconfigurable microscope that integrates multiple advanced imaging techniques including light-sheet, label-free, super-resolution, and multi-photon, all equipped with adaptive optics.

View Article and Find Full Text PDF

PIEZO1 is critical to numerous physiological processes, transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of visualizing endogenous PIEZO1 activity and localization to understand its functional roles. To enable physiologically and clinically relevant studies on human PIEZO1, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1.

View Article and Find Full Text PDF

High-resolution tissue imaging is often compromised by sample-induced optical aberrations that degrade resolution and contrast. While wavefront sensor-based adaptive optics (AO) can measure these aberrations, such hardware solutions are typically complex, expensive to implement, and slow when serially mapping spatially varying aberrations across large fields of view. Here, we introduce AOViFT (Adaptive Optical Vision Fourier Transformer)-a machine learning-based aberration sensing framework built around a 3D multistage Vision Transformer that operates on Fourier domain embeddings.

View Article and Find Full Text PDF

In eukaryotic organisms, the nucleus is remodeled to accommodate the space required for chromosome segregation. Remodeling strategies range from closed division, where the nuclear envelope remains intact, to open divisions, where the nuclear envelope is temporarily disassembled. While the budding yeast undergoes closed mitosis, its meiotic nuclear division strategy is less understood.

View Article and Find Full Text PDF

High-resolution tissue imaging is often compromised by sample-induced optical aberrations that degrade resolution and contrast. While wavefront sensor-based adaptive optics (AO) can measure these aberrations, such hardware solutions are typically complex, expensive to implement, and slow when serially mapping spatially varying aberrations across large fields of view. Here, we introduce AOViFT (Adaptive Optical Vision Fourier Transformer)---a machine learning-based aberration sensing framework built around a 3D multistage Vision Transformer that operates on Fourier domain embeddings.

View Article and Find Full Text PDF

The choroid plexus is a major site for cerebrospinal fluid (CSF) production, characterized by a multiciliated epithelial monolayer that regulates CSF production. We demonstrate that defective choroid plexus ciliogenesis or intraflagellar transport yields neonatal hydrocephalus, at least in part due to increased water channel Aqp1 and ion transporter Atp1a2 expression. We demonstrate choroid plexus multicilia as sensory cilia, transducing both canonical and non-canonical Sonic Hedgehog (Shh) signaling.

View Article and Find Full Text PDF

Choroid plexus is a major site for cerebrospinal fluid (CSF) production, characterized by a multiciliated epithelial monolayer that regulates CSF production. We demonstrate that defective choroid plexus ciliogenesis or Intraflagellar transport yields neonatal hydrocephalus, at least in part, due to increased water channel Aqp1 and ion transporter Atp1a2 expression. We demonstrate choroid plexus multicilia as sensory cilia, transducing both canonical and non-canonical Shh signaling.

View Article and Find Full Text PDF
Article Synopsis
  • Cells are crucial for studying health and diseases, but traditional models are limited in their ability to accurately represent cell function and behavior.
  • Advances in AI and omics technology enable the development of AI virtual cells (AIVCs), complex models that simulate molecular, cellular, and tissue behavior across various conditions.
  • The creation of AIVCs aims to enhance biological research by allowing detailed simulations, speeding up discoveries, and promoting collaborative and interdisciplinary approaches in open scientific research.
View Article and Find Full Text PDF

Light sheet microscopy is a powerful technique for high-speed three-dimensional imaging of subcellular dynamics and large biological specimens. However, it often generates datasets ranging from hundreds of gigabytes to petabytes in size for a single experiment. Conventional computational tools process such images far slower than the time to acquire them and often fail outright due to memory limitations.

View Article and Find Full Text PDF

The cell is arguably the most fundamental unit of life and is central to understanding biology. Accurate modeling of cells is important for this understanding as well as for determining the root causes of disease. Recent advances in artificial intelligence (AI), combined with the ability to generate large-scale experimental data, present novel opportunities to model cells.

View Article and Find Full Text PDF

Computational imaging reconstructions from multiple measurements that are captured sequentially often suffer from motion artifacts if the scene is dynamic. We propose a neural space-time model (NSTM) that jointly estimates the scene and its motion dynamics, without data priors or pre-training. Hence, we can both remove motion artifacts and resolve sample dynamics from the same set of raw measurements used for the conventional reconstruction.

View Article and Find Full Text PDF

Optical nanoscopy of intact biological specimens has been transformed by recent advancements in hydrogel-based tissue clearing and expansion, enabling the imaging of cellular and subcellular structures with molecular contrast. However, existing high-resolution fluorescence microscopes have limited imaging depth, which prevents the study of whole-mount specimens without physical sectioning. To address this challenge, we developed "photochemical sectioning," a spatially precise, light-based sample sectioning process.

View Article and Find Full Text PDF

At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced.

View Article and Find Full Text PDF

At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced.

View Article and Find Full Text PDF

PIEZO1 is critical to numerous physiological processes, transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of visualizing endogenous PIEZO1 activity and localization to understand its functional roles. To enable physiologically and clinically relevant studies on human PIEZO1, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1.

View Article and Find Full Text PDF

Lattice light sheet microscopy excels at the noninvasive imaging of three-dimensional (3D) dynamic processes at high spatiotemporal resolution within cells and developing embryos. Recently, several papers have called into question the performance of lattice light sheets relative to the Gaussian sheets most common in light sheet microscopy. Here, we undertake a theoretical and experimental analysis of various forms of light sheet microscopy, which demonstrates and explains why lattice light sheets provide substantial improvements in resolution and photobleaching reduction.

View Article and Find Full Text PDF

How does wiring specificity of neural maps emerge during development? Formation of the adult olfactory glomerular map begins with the patterning of projection neuron (PN) dendrites at the early pupal stage. To better understand the origin of wiring specificity of this map, we created genetic tools to systematically characterize dendrite patterning across development at PN type-specific resolution. We find that PNs use lineage and birth order combinatorially to build the initial dendritic map.

View Article and Find Full Text PDF

Many breast cancer (BC) patients suffer from complications of metastatic disease. To form metastases, cancer cells must become migratory and coordinate both invasive and proliferative programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive switch in BC cells.

View Article and Find Full Text PDF

Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons.

View Article and Find Full Text PDF

Actin assembly facilitates vesicle formation in several trafficking pathways, including clathrin-mediated endocytosis (CME). Interestingly, actin does not assemble at all CME sites in mammalian cells. How actin networks are organized with respect to mammalian CME sites and how assembly forces are harnessed, are not fully understood.

View Article and Find Full Text PDF

Nuclear envelope assembly during late mitosis includes rapid formation of several thousand complete nuclear pore complexes (NPCs). This efficient use of NPC components (nucleoporins or "NUPs") is essential for ensuring immediate nucleocytoplasmic communication in each daughter cell. We show that octameric subassemblies of outer and inner nuclear pore rings remain intact in the mitotic endoplasmic reticulum (ER) after NPC disassembly during prophase.

View Article and Find Full Text PDF

Expansion microscopy (ExM) physically magnifies biological specimens to enable nanoscale-resolution imaging using conventional microscopes. Current ExM methods permeate specimens with free-radical-chain-growth-polymerized polyacrylate hydrogels, whose network structure limits the local isotropy of expansion as well as the preservation of morphology and shape at the nanoscale. Here we report that ExM is possible using hydrogels that have a more homogeneous network structure, assembled via non-radical terminal linking of tetrahedral monomers.

View Article and Find Full Text PDF

We describe here the design and implementation of an microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level.

View Article and Find Full Text PDF

Collective migration of epithelial cells plays crucial roles in various biological processes such as cancer invasion. In migrating epithelial sheets, leader cells form lamellipodia to advance, and follower cells also form similar motile apparatus at cell-cell boundaries, which are called cryptic lamellipodia (c-lamellipodia). Using adenocarcinoma-derived epithelial cells, we investigated how c-lamellipodia form and found that they sporadically grew from around E-cadherin-based adherens junctions (AJs).

View Article and Find Full Text PDF