Repeated propofol exposure-induced neuronal damage and cognitive impairment in aged rats by activation of NF-κB pathway and NLRP3 inflammasome.

Neurosci Lett

Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China. Electronic address:

Published: January 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Elderly patients receive propofol at regular intervals for sedation during gastrointestinal endoscopy. However, the link between cognition and intermittent propofol exposure remains unclear. Thus, we used aged rats to investigate the effect of propofol on cognition.

Methods: The study included two parts. In the first part, aged (18-20 months old) male Sprague-Dawley rats underwent intermittent intraperitoneal injection of propofol (200 mg/kg) or intralipid, every 9 days or once a day. In the second part, some aged rats received intraperitoneal injection of Bay 11-7082 (1 mg/kg), a specific inhibitor of NF-κB, 30 min before propofol injection. Memory tests were performed to evaluate cognition 24 h after the entire treatment. The hippocampal neuronal damage was assessed by TUNEL staining. The hippocampal levels of p-NF-κB p65, NLRP3, caspase-1 p20, and cleaved caspase-3 were detected by western blotting. The hippocampal and serum levels of IL-1β, IL-6, and TNF-α were evaluated using ELISA.

Results: There were no differences in the behavioral tests, hippocampal neuronal damage, and neuroinflammation between groups given intralipid and propofol treatment every 9 days. However, repeated propofol treatment once a day promoted activation of NF-κB and the NLRP3 inflammasome, inducing cognitive impairment and neuroinflammation. Interestingly, pretreatment with Bay-11-7082 not only inhibited NF-κB/NLRP3 inflammasome activation, but also attenuated neuronal damage and cognitive dysfunction in aged rats exposed to daily propofol treatment.

Conclusions: Intermittent propofol treatment every 9 days may be safe for aged rats. However, propofol treatment once a day could impair the cognition of aged rats, partly through the activation of the NF-κB pathway and NLRP3 inflammasome, which may be a potential targets for the treatment of cognitive impairment in elderly patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2020.135461DOI Listing

Publication Analysis

Top Keywords

aged rats
24
neuronal damage
16
propofol treatment
16
cognitive impairment
12
activation nf-κb
12
nlrp3 inflammasome
12
propofol
10
repeated propofol
8
damage cognitive
8
nf-κb pathway
8

Similar Publications

Background: Phthalates are compounds used as plasticizers to increase the flexibility of plastics and are considered endocrine disruptors. Some studies suggest that the origin of prostate cancer (PCa) may be associated with disturbances during embryo-fetal development. Previous data showed that perinatal exposure to the same phthalate mixture (PM) used here increased the incidence of adenocarcinomas in the prostates of aged rats.

View Article and Find Full Text PDF

While cognitive function remains stable for majority of the lifespan, many functions sharply decline in later life. Women have higher rates of neurodegenerative diseases that involve memory loss, including Alzheimer's disease. This sex disparity may be due to longer life expectancies when compared to men; women outlive men by roughly 5 years globally.

View Article and Find Full Text PDF

The hippocampus (HC), a central hub for memory and cognition, exhibits unique metabolic resilience during aging despite widespread brain glucose hypometabolism. Here, we report that aged humans and macaques paradoxically display elevated HC glucose uptake (18F-FDG PET SUVR) alongside strengthened connectivity to sensory-motor and limbic networks-an adaptive rewiring revealed by graph-theoretical metabolic network analysis. Integrated multi-omics profiling identified STT3A (oligosaccharyltransferase) and ALG5 (dolichyl-phosphate β-glucosyltransferase) as key regulators of age-related HC adaptation, with their upregulation in aged macaque hippocampi driving N-glycosylation-dependent metabolic reprogramming.

View Article and Find Full Text PDF

The objective of this study is to analyze national trends in the adoption of robotic-assisted thoracoscopic surgery (RATS) for lung cancer resections compared to video-assisted thoracoscopic surgery (VATS) and open approaches across geographic regions and institution types in the National Cancer Database (NCDB). A retrospective cohort study was performed of adults who underwent a lung resection for non-small cell lung cancer between 2010 and 2021 in the NCDB. Data were stratified by facility type, surrounding area population, and geographic location.

View Article and Find Full Text PDF

Partial reprogramming (pulsed expression of reprogramming transcription factors) ameliorates multiple tissue functions in aged mice; however, its impact on peripheral nerve regeneration remains largely unexplored. In this study, the temporal dynamics of Schwann cells following sciatic nerve injury in young and aged rats are systematically examined using single-cell transcriptomics to identify a Runx2 cell population highly enriched with stress granules as transitional homeostatic cells during Schwann cell differentiation. It is found that pathological accumulation of this cluster during axonal regeneration constitutes a critical contributing factor to impaired neural repair in aging.

View Article and Find Full Text PDF