Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Decellularized extracellular matrix is one of the most promising biological scaffold supporting in vitro tissue growth and in vivo tissue regeneration in both preclinical research and clinical practice. In case of thick tissues or even organs, conventional static decellularization methods based on chemical or enzymatic treatments are not effective in removing the native cellular material without affecting the extracellular matrix. To overcome this limitation, dynamic decellularization methods, mostly based on perfusion and agitation, have been proposed. In this study, we developed a low-cost scalable 3D-printed sample-holder for agitation-based decellularization purposes, designed for treating multiple specimens simultaneously and for improving efficiency, homogeneity and reproducibility of the decellularization treatment with respect to conventional agitation-based approaches. In detail, the proposed sample-holder is able to house up to four specimens and, immersed in the decellularizing solution within a beaker placed on a magnetic stirrer, to expose them to convective flow, enhancing the solution transport through the specimens while protecting them. Computational fluid dynamics analyses were performed to investigate the fluid phenomena establishing within the beaker and to support the sample-holder design. Exploratory biological tests performed on human skin specimens demonstrated that the sample-holder reduces process duration and increases treatment homogeneity and reproducibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2020.09.006DOI Listing

Publication Analysis

Top Keywords

low-cost scalable
8
scalable 3d-printed
8
3d-printed sample-holder
8
sample-holder agitation-based
8
agitation-based decellularization
8
extracellular matrix
8
decellularization methods
8
methods based
8
homogeneity reproducibility
8
sample-holder
5

Similar Publications

The plateau pika () is a keystone species on the Qinghai-Tibet Plateau, and its population density-typically inferred from burrow counts-requires rapid, low-cost monitoring. We propose YOLO-Pika, a lightweight detector built on YOLOv8n that integrates (1) a Fusion_Block into the backbone, leveraging high-dimensional mapping and fine-grained gating to enhance feature representation with negligible computational overhead, and (2) an MS_Fusion_FPN composed of multiple MSEI modules for multi-scale frequency-domain fusion and edge enhancement. On a plateau pika burrow dataset, YOLO-Pika increases mAP50 by 3.

View Article and Find Full Text PDF

Purpose: Natural killer (NK) cell-derived extracellular vesicles (NK-EVs) have garnered significant research interest in the field of tumor immunotherapy. However, the large-scale production of NK-EVs remains a major challenge, limiting their clinical application. This study aims to develop a simple and efficient method for the preparation of NK cell-derived nanovesicles (NK-NVs) and to evaluate their cytotoxicity and drug delivery potential.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) are rapidly advancing due to their high power conversion efficiencies (PCEs) and low fabrication costs. However, their commercialization is hindered by lead toxicity and the use of expensive materials, such as Spiro-OMeTAD and gold electrodes. This study presents a comprehensive SCAPS-1D simulation-based analysis of 14 perovskite absorber materials, spanning both Pb-based and lead-free compounds, under a unified device architecture using low-cost, nontoxic components: ZnO as the electron transport material (ETM), PEDOT:PSS + WO as a dual hole transport material, and nickel as the back contact.

View Article and Find Full Text PDF

We report the performance of solid-state ceramic supercapacitors (SSCs) based on a novel composite electrolyte comprising aluminum-doped lithium lanthanum titanate perovskite, LiLaTiAlO (Al-doped LLTO), and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM BF). Rietveld refinement of X-ray diffraction data confirms the preservation of the tetragonal perovskite phase after Al substitution, indicating structural stability of the host lattice. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy further corroborate the successful incorporation of Al without forming secondary phases.

View Article and Find Full Text PDF

BiOCl@Polypyrrole metal catalysts with a core-shell structure to construct high-safety and stable lithium‑sulfur batteries.

J Colloid Interface Sci

August 2025

Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Lithium‑sulfur batteries (LSBs) are promising alternatives to lithium-ion batteries due to their high energy density and low cost. However, issues like the lithium polysulfide (LiPSs) shuttle effect, lithium dendrite growth, and flammable electrolytes hinder commercialization. In this study, we have developed a metal-based catalyst, bismuth oxychloride (BiOCl) nanoflowers coated with conductive polypyrrole (Bi@Ppy), via hydrothermal synthesis.

View Article and Find Full Text PDF