98%
921
2 minutes
20
Objectives: Prediction of intracranial aneurysm rupture is important in the management of unruptured aneurysms. The application of radiomics in predicting aneurysm rupture remained largely unexplored. This study aims to evaluate the radiomics differences between ruptured and unruptured aneurysms and explore its potential use in predicting aneurysm rupture.
Methods: One hundred twenty-two aneurysms were included in the study (93 unruptured). Morphological and radiomics features were extracted for each case. Statistical analysis was performed to identify significant features which were incorporated into prediction models constructed with a machine learning algorithm. To investigate the usefulness of radiomics features, three models were constructed and compared. The baseline model A was constructed with morphological features, while model B was constructed with addition of radiomics shape features and model C with more radiomics features. Multivariate analysis was performed for the ten most important variables in model C to identify independent risk factors. A simplified model based on independent risk factors was constructed for clinical use.
Results: Five morphological features and 89 radiomics features were significantly associated with rupture. Model A, model B, and model C achieved the area under the receiver operating characteristic curve of 0.767, 0.807, and 0.879, respectively. Model C was significantly better than model A and model B (p < 0.001). Multivariate analysis identified two radiomics features which were used to construct the simplified model showing an AUROC of 0.876.
Conclusions: Radiomics signatures were different between ruptured and unruptured aneurysms. The use of radiomics features, especially texture features, may significantly improve rupture prediction performance.
Key Points: • Significant radiomics differences exist between ruptured and unruptured intracranial aneurysms. • Radiomics shape features can significantly improve rupture prediction performance over conventional morphology-based prediction model. The inclusion of histogram and texture radiomics features can further improve the performance. • A simplified model with two variables achieved a similar level of performance as the more complex ones. Our prediction model can serve as a promising tool for the risk management of intracranial aneurysms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-020-07325-3 | DOI Listing |
Ann Surg Oncol
September 2025
HepatoBiliaryPancreatic Surgery, AOU Careggi, Department of Experimental and Clinical Medicine (DMSC), University of Florence, Florence, Italy.
Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.
Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.
Int J Surg
September 2025
Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).
Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.
Front Oncol
August 2025
Department of Radiology, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China.
Objectives: Lymph node metastasis (LNM) is an important factor affecting the stage and prognosis of patients with lung adenocarcinoma. The purpose of this study is to explore the predictive value of the stacking ensemble learning model based on F-FDG PET/CT radiomic features and clinical risk factors for LNM in lung adenocarcinoma, and elucidate the biological basis of predictive features through pathological analysis.
Methods: Ninety patients diagnosed with lung adenocarcinoma who underwent PET/CT were retrospectively analyzed and randomly divided into the training and testing sets in a 7:3 ratio.
Front Oncol
August 2025
Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Purpose: Identifying radiomics features that help predict whether glioblastoma patients are prone to developing epilepsy may contribute to an improvement of preventive treatment and a better understanding of the underlying pathophysiology.
Materials And Methods: In this retrospective study, 3-T MRI data of 451 pretreatment glioblastoma patients (mean age: 61.2 ± 11.
J Magn Reson Imaging
September 2025
Key Laboratory of Intelligent Medical Imaging of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Tumor deposits (TDs) are an important prognostic factor in rectal cancer. However, integrated models combining clinical, habitat radiomics, and deep learning (DL) features for preoperative TDs detection remain unexplored.
Purpose: To investigate fusion models based on MRI for preoperative TDs identification and prognosis in rectal cancer.