Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The tumour immune microenvironment is a crucial mediator of lung tumourigenesis, and characterizing the immune landscape of patient tumours may guide immunotherapy treatment regimens and uncover novel intervention points. We sought to identify the landscape of tumour-infiltrating immune cells in the context of long non-coding RNA (lncRNAs), known regulators of gene expression. We examined the lncRNA profiles of lung adenocarcinoma (LUAD) tumours by interrogating RNA sequencing data from microdissected and non-microdissected samples (BCCRC and TCGA). Subsequently, analysis of single-cell RNA sequencing data from lung tumours and flow-sorted healthy peripheral blood mononuclear cells identified lncRNAs in immune cells, highlighting their biological and prognostic relevance. We discovered lncRNA expression patterns indicative of regulatory relationships with immune-related protein-coding genes, including the relationship between AC008750.1 and NKG7 in NK cells. Activation of NK cells in vitro was sufficient to induce AC008750.1 expression. Finally, siRNA-mediated knockdown of AC008750.1 significantly impaired both the expression of NKG7 and the anti-tumour capacity of NK cells. We present an atlas of cancer-cell extrinsic immune cell-expressed lncRNAs, in vitro evidence for a functional role of lncRNAs in anti-tumour immune activity, which upon further exploration may reveal novel clinical utility as markers of immune infiltration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547676PMC
http://dx.doi.org/10.1038/s41598-020-73787-6DOI Listing

Publication Analysis

Top Keywords

long non-coding
8
non-coding rna
8
immune
8
tumour immune
8
immune cells
8
rna sequencing
8
sequencing data
8
cells
6
expression
5
assessment long
4

Similar Publications

Colorectal cancer (CRC) constitutes a significant global health challenge, accounting for a considerable proportion of cancer cases and associated mortality. Projections indicate a potential increase in new cases by 2040, attributed to demographic factors such as aging and population growth. Although advancements in the understanding of CRC pathophysiology have broadened treatment options, challenges such as drug resistance and adverse effects persist, highlighting the necessity for enhanced diagnostic methodologies.

View Article and Find Full Text PDF

This study identifies a transcriptomic profile of long noncoding RNAs in gingival crevicular fluid samples in pregnant women with gestational diabetes risk. NEAT1 and LINC-PINT were increased expression in gingival crevicular fluid samples in pregnancies later diagnosed with gestational diabetes mellitus.

View Article and Find Full Text PDF

TP53TG1 is a long non-coding RNA related to the TP53 gene, which plays an important role in various biological processes such as tumorigenesis, cell cycle regulation, and DNA damage repair. In recent years, researchers have begun to explore the role of TP53TG1 in dental pulp biology, especially its potential impact on pulpitis and other pulp-related diseases. However, the role of TP53TG1 in human dental pulp stem cells (hDPSCs) remains unclear.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a type of malignancy that originates in the prostate gland, often characterized by uncontrolled cell growth and potential metastasis. Long non-coding RNAs (lncRNAs) play crucial regulatory roles in the progression of prostate cancer, potentially facilitating tumor growth and metastasis via mechanisms that involve the enhancement of aerobic glycolysis. This study aimed to investigate the functional role of lncRNA HANR in prostate cancer progression.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are involved in the numerous types of tumors. The aim of this study is to comprehend the pathological mechanism of lncRNA CASC19 in ovarian cancer. CASC19, miR-761 and CBX2 expression in the samples was quantitatively detected by real-time quantitative polymerase chain reaction (RT-qPCR) reaction.

View Article and Find Full Text PDF