98%
921
2 minutes
20
We present a new LSTM (P-LSTM: Progressive LSTM) network, aiming to predict morphology and states of cell colonies from time-lapse microscopy images. Apparent short-term changes occur in some types of time-lapse cell images. Therefore, long-term-memory dependent LSTM networks may not predict accurately. The P-LSTM network incorporates the images newly generated from cell imaging progressively into LSTM training to emphasize the LSTM short-term memory and thus improve the prediction accuracy. The new images are input into a buffer to be selected for batch training. For real-time processing, parallel computation is introduced to implement concurrent training and prediction on partitioned images.Two types of stem cell images were used to show effectiveness of the P-LSTM network. One is for tracking of ES cell colonies. The actual and predicted ES cell images possess similar colony areas and the same transitions of colony states (moving, merging or morphology changing), although the predicted colony mergers may delay in several time-steps. The other is for prediction of iPS cell reprogramming from the CD34+ human cord blood cells. The actual and predicted iPS cell images possess high similarity evaluated by the PSNR and SSIM similarity evaluation metrics, indicating the reprogramming iPS cell colony features and morphology can be accurately predicted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9175759 | DOI Listing |
Methods Appl Fluoresc
September 2025
Department of Biotechnology and Biophysics, University of Würzburg, Department of Biotechnology & Biophysics, Wuerzburg University, Am Hubland, Wuerzburg, other, 97074, GERMANY.
Super-resolution microscopy (SRM) has revolutionized fluorescence imaging enabling insights into the molecular organization of cells that were previously unconceivable. Latest developments now allow the visualization of individual molecules with nanometer precision and imaging with molecular resolution. However, translating these achievements to imaging under physiological conditions in cells remains challenging.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
Achucarro Basque Center for Neuroscience, Leioa, Spain.
Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Geriatric Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008.
Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tang Shan, P. R. China.
Singlet oxygen (O) plays a crucial role in cancer chemotherapy and ROS biology, driving the need for highly specific probes to monitor its dynamics in real time. Herein, we developed the ratiometric fluorescent probe NAP-t-PY, utilizing a 2-pyridone recognition unit. The probe's 1-methyl-3-benzyl-2-pyridone moiety reacts specifically with O [4 + 2] cycloaddition, forming the endoperoxide NAP-t-PY-EP.
View Article and Find Full Text PDFLab Chip
September 2025
Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
Cell sorting is an important fundamental process for the selection and purification of target cell types for cell analysis in the life sciences and medical fields. In particular, demand is increasing for high-throughput cell sorting technology for the analysis of rare cells. Toward this end, we developed a centrifugal force-based cell sorting technique that relies on the adhesion force of cells as a marker.
View Article and Find Full Text PDF