Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, electroencephalography (EEG) has emerged as a low-cost, accessible and objective tools for the early diagnosis of Alzheimer's disease (AD). AD is preceded by Mild Cognitive Impairment (MCI), typically refers to early-stage AD disease. The purpose of this study is to classify MCI patients from the multi-domain features of their electroencephalography (EEG). Firstly, we extracted the multi-domain (time, frequency and information theory) features from resting-state EEG signals before and after a cognitive task from 15 MCI groups and 15 age-matched healthy controls. Then, principal component analysis (PCA) was used to perform feature selection. After that, we compared the performance between SVM and KNN on our EEG dataset. The good performance was observed both from SVM and KNN, which demonstrates the effectiveness of multi-domain features. Furthermore, KNN performs better than SVM and the EEG signals after the cognitive task works better than those before the task.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9176053DOI Listing

Publication Analysis

Top Keywords

multi-domain features
12
mild cognitive
8
cognitive impairment
8
features resting-state
8
resting-state eeg
8
electroencephalography eeg
8
eeg signals
8
signals cognitive
8
cognitive task
8
svm knn
8

Similar Publications

Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a challenging neurodegenerative condition often prone to diagnostic errors, where early and accurate diagnosis is critical for effective clinical management. However, existing diagnostic methods often fail to fully exploit multimodal data or systematically incorporate expert domain knowledge. To address these limitations, we propose MKD-Net, a multimodal and knowledge-driven diagnostic framework that integrates imaging and non-imaging clinical data with structured expert insights to enhance diagnostic performance.

View Article and Find Full Text PDF

Background: Cone-beam computed tomography (CBCT) is a widely used imaging technique. In practical applications, reducing projection views can decrease radiation exposure and accelerate scanning speed, with potential benefits for stationary CT systems. However, ultra-sparse-view acquisition (e.

View Article and Find Full Text PDF

Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage and ecological changes, which are vital for forecasting carbon prices. Carbon prices fluctuate due to the interaction of various factors, exhibiting non-stationary characteristics and inherent uncertainties, making accurate predictions particularly challenging.

View Article and Find Full Text PDF

Generalized zero-shot learning (GZSL) focuses on recognizing seen and unseen classes against domain shift problem where data of unseen classes may be misclassified as seen classes. However, existing GZSL is still limited to seen domains. In the current work, we study cross-domain GZSL (CDGZSL) which addresses GZSL towards unseen domains.

View Article and Find Full Text PDF