98%
921
2 minutes
20
Li metal as a battery anode has been intensively studied because of its high gravimetric capacity (3860 mAh g), a low standard electrode potential (-3.04 vs. SHE), a reasonable electronic conductivity and low density. However, lithium metal suffers from a continuous Li dendrite growth upon charge-discharge cycling, delivering a poor coulombic efficiency and consequently its early failure. Here, engineered bilayer separators demonstrate that a boron nitride-graphene (BNGr) layer coated on one side of polypropylene (PP) membrane remarkably reduces the polarization and impedance, and significantly improve the performance and stability of Li/Cu half-cells. Moreover, Li/LiFePO full cell with the modified BNGr/PP separator presents a remarkably stable 1000 charge-discharge cycles with a specific capacity of 114 mAh g at 1C-rate. The superiority of the modified separator is orginated from an effective synergistic effect between physico-chemical properties of Gr (reducing local current density) and BN (dissipating local heat) and its enhanced structural and mechanical stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.09.009 | DOI Listing |
ACS Nano
May 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
To achieve high-precision intelligent tactile recognition and hyperfine operation tasks, tactile sensors need to possess the ability to discriminate minute pressures within the range of human perception. However, due to the lack of methodologies for noise suppression, existing tactile sensing mechanisms are inferior in pressure resolution. In this work, we emulate the structure of biological fingertip Merkel cells to develop a quasi-2D vertical tunneling tactile sensor based on conformal graphene nanowalls-hexagonal boron nitride-graphene (CGNWs-hBN-Gr) van der Waals (vdWs) heterojunctions.
View Article and Find Full Text PDFNanoscale Adv
March 2025
School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan 38541 Republic of Korea
Two-dimensional (2D) hybrid materials, particularly those based on boron nitride (BN) and graphene oxide (GO), have attracted significant attention for energy applications owing to their distinct structural and electronic properties. BN/GO composites uniquely combine the mechanical strength, thermal stability and electrical insulation of BN with the high conductivity and flexibility of GO, creating advanced materials ideal for the fabrication of batteries, supercapacitors and fuel cells. These hybrids offer synergistic effects, enhanced charge transport, increased surface area, and improved chemical stability, making them promising candidates for high-performance energy systems.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.
View Article and Find Full Text PDFNano Lett
October 2024
School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
Sliding ferroelectricity enables materials with intrinsic centrosymmetric symmetry to generate spontaneous polarization via stacking engineering, extending the family of ferroelectric materials and enriching the field of low-dimensional ferroelectric physics. Vertical ferroelectric domains, where the polarization is perpendicular to atomic motion, have been discovered in twisted bilayers of inversion symmetry broken systems such as hexagonal boron nitride, graphene, and transition metal chalcogenides. In this study, we demonstrate that this symmetry breaking also induces lateral polar networks in twisted bilayer rhombohedral-stacked WSe, as determined through symmetry considerations and vector piezoresponse force microscopy (V-PFM) results.
View Article and Find Full Text PDFAdv Mater
August 2024
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
Sliding ferroelectricity in 2D materials, arising from interlayer sliding-induced interlayer hybridization and charge redistribution at the van der Waals interface, offers a means to manipulate spontaneous polarization at the atomic scale through various methods such as stacking order, interfacial contact, and electric field. However, the practical application of extending 2D sliding ferroelectricity remains challenging due to the contentious mechanisms and the complex device structures required for ferroelectric switching. Here, a sliding memristor based on a graphene/parallel-stacked hexagonal boron nitride/graphene tunneling device, featuring a stable memristive hysteresis induced by interfacial polarizations and barrier height modulations, is presented.
View Article and Find Full Text PDF