98%
921
2 minutes
20
Three-dimensional (3D) printing using melt electrowriting (MEW) technology is a recently developed technique to produce biocompatible micron-level mesh scaffolds layer-by-layer that can be seeded with cells for tissue engineering. Examining cell behavior, such as growth rate and migration, can be problematic in these opaque 3D scaffolds. A straightforward and quantitative method was developed to examine these cellular parameters on poly-ɛ-caprolactone (PCL) multilayered MEW scaffolds developed as components of the annulus fibrosus region of bioengineered intervertebral discs. The anti-adhesion protein, bovine serum albumin (BSA), was used to coat plasticware to improve mesenchymal stem cell (T0523) adhesion to MEW scaffolds. Cells were seeded on circular MEW (cMEW) discs as defined growth starting points sandwiched between two test template scaffolds investigated at varying pore sizes. Cell expansion, growth, and migration were quantitated utilizing the protein-specific dye sulforhodamine B (SRB). Live cell imaging combined with image analysis were used to examine cell motility and expansion on 3D scaffolds. After one coating of BSA, cells remained nonadherent for the duration of the study with cell spheroids formed and enlarging over 21 days and becoming entangled in MEW scaffold pores. Cells grown on the 250 μm pore size scaffolds exhibited a doubling time of 7 days, whereas the 400 μm pore size scaffolds time was 11.5 days. BSA coating of tissue culture dishes prevented surface adhesion of cells to vessel surfaces and promoted spheroid formation that encouraged attachment to the PCL scaffolds. Batch-printed cMEW scaffolds were useful as a defined starting point for quantitative assays that successfully measured cell migration, expansion and proliferation on test scaffolds. The SRB assay was shown to be a useful and straightforward way to quantitate cell numbers in multilayered MEW scaffolds. A pore size of 250 μm exhibited the fastest cell growth, spread, and expansion. Impact statement In this article, a new, useful, and straightforward method to quantitate cell numbers on three-dimensional (3D) melt electrowritten (MEW) scaffolds is presented. By using the sulforhodamine B assay on bovine serum albumin-coated dishes cell migration, expansion and proliferation in 3D printed MEW test scaffolds were quantitatively measured. Printed circular MEW (cMEW) scaffolds sandwiched between two MEW test scaffolds (Fig. 3) were used as defined cellular growth starting points with a particular pore size of 250 μm displaying the fastest cell growth and migration. This MEW sandwich technique could potentially be used to quantitate cell numbers and migration in other 3D multilayered MEW scaffold systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEC.2020.0240 | DOI Listing |
Biol Proced Online
September 2025
Division of Surface Physics, Department of Physics and Earth System Sciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
Background: Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.
Methods: Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds.
J Mol Histol
September 2025
Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China.
The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.
View Article and Find Full Text PDFBr J Cancer
September 2025
School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
Background: Activin A/Smad signaling plays an important role in promoting cancer stemness and chemoresistance in pancreatic ductal adenocarcinoma (PDAC), however the precise regulation on the termination of this pathway has not been fully understood.
Methods: LncRNA SLC7A11-AS1 interacting proteins were identified through RNA pull-down followed by LC-MS/MS. The protein interaction was analyzed by co-immunoprecipitation.
Handb Exp Pharmacol
September 2025
National Institute of Biological Sciences, Beijing, China.
G protein-coupled receptors (GPCRs) engage multiple transducers to regulate distinct physiological processes. These transducers include various G proteins subtypes, GPCR kinases (GRKs), and β-arrestins. In addition to promoting receptor desensitization, β-arrestins serve as scaffolds for signaling via non-G protein pathways.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
In the search for novel succinate dehydrogenase inhibitors (SDHIs) fungicides for managing rice sheath blight (RSB) and sclerotinia stem rot (SSR), 28 pyrazole-4-carboxamides incorporating stilbene or diphenylacetylene scaffolds were synthesized and evaluated for antifungal activities. The results showed that compound exhibited the most promising antifungal efficacy against and with EC (half maximal effective concentration) values of 0.004 and 0.
View Article and Find Full Text PDF