Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The phytotoxic potential of the leaves and twigs of , discarded in the mat-making industry against four test plants (lettuce ( L.), rapeseed ( L.), foxtail fescue ( (L.) C.C. Gmel.) and timothy ( L.)) was investigated and found strong phytotoxic activity. An assay-guided fractionation of extarcts against cress ( L.) through a series of column chromatography steps yielded two compounds, 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoic acid (ODFO) and ()-6-hydroxy-2,6-dimethylocta-2,7-dienoic acid (8-carboxylinalool). ODFO and 8-carboxylinalool showed strong phytotoxic activity against cress and timothy. The concentrations required for 50% growth inhibition ( value) of the seedlings of cress and timothy were 111.94-128.01 and 36.30-91.75 µM, respectively, for ODFO, but the values were much higher at 315.98-379.13 and 107.92-148.41 µM, respectively, for 8-carboxylinalool, indicating the stronger phytotoxic activity of ODFO. This study is the first to isolate ODFO and 8-carboxylinalool from and their phytotoxic potential while ODFO is firstly encountered from any natural source. The growth inhibitory activity of the identified compounds may explain their role in the phytotoxic activity of , which suggests the possible use of its leaves and twigs or its active constituents as natural bioherbicides.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03601234.2020.1822716DOI Listing

Publication Analysis

Top Keywords

phytotoxic activity
20
identified compounds
8
phytotoxic potential
8
leaves twigs
8
strong phytotoxic
8
odfo 8-carboxylinalool
8
cress timothy
8
phytotoxic
7
activity
6
odfo
6

Similar Publications

Phosphorylated structural analogs of Benzalkonium Chloride-diisopropoxyphosphorylmethane (dimethyldodecylammonium) bromide 1 (phosphorylated quaternary ammonium salt) and isopropoxyphosphorylmethane (dimethylalkylammonium) 2 (phosphorylated betaine) were synthesized. The structure of compound 1 was confirmed by single crystal X-ray diffraction study. The antibacterial, antifungal, and ecotoxicological profiles of the synthesized compounds were evaluated against aquatic organisms and flowering plants.

View Article and Find Full Text PDF

Introduction: This study evaluates two innovative protective treatments for wooden cultural heritage objects vulnerable to biodeterioration. The first involves polyacrylic resin solutions embedded with silver nanoparticles (AgNPs), while the second uses the siloxane-based coupling agent 3-mercaptopropyltrimethoxysilane (3-MPTMS) to enhance AgNP adhesion to wood surfaces.

Methods: Antimicrobial, anti-biofilm, and anti-metabolic activities were assessed using both qualitative and quantitative assays against biodeteriogenic strains (, and ).

View Article and Find Full Text PDF

Genistein: A promising botanical fungicide candidate for enhancing tomato yield and quality by controlling Alternaria solani.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

The overreliance on traditional chemical fungicides, combined with the emergence of resistance, poses significant challenges for food safety. Early blight, caused by the fungal pathogen Alternaria solani (A. solani), is among the most significant contributors to pre- and postharvest yield losses in tomato cultivation.

View Article and Find Full Text PDF

A foliar disease of invasive black swallow-wort () caused by .

Plant Dis

September 2025

USDA-ARS Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Fort Detrick, Maryland, United States, 21702;

Black swallow-wort () is an aggressive invasive vine infesting pastures and fields in the northeastern United States. An unknown fungal pathogen was recovered from foliar lesions occurring on black swallow-wort at two locations in Rhode Island in 2022 and was identified as based on morphological and molecular descriptions of eight isolates. The potential weed biological control value of a single isolate, FDWSRU 22-216, was evaluated through colonized agar block and conidial spray inoculations of black swallow-wort.

View Article and Find Full Text PDF

Thiosulfonates Based on Prothioconazole for Enhancing Antifungal Activity and Mitigating Phytotoxicity in Plant Pathogen Management.

J Agric Food Chem

September 2025

State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Prothioconazole (Prot) has been widely used for over two decades in controlling cereal diseases. However, the continuous emergence of resistance in plant pathogens has necessitated the development of novel fungicides. Thiosulfonate compounds have great application prospects due to their unique structural features and multisite activity.

View Article and Find Full Text PDF