Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The tumor necrosis factor (TNF)-like core domain of receptor activator of nuclear factor-κB ligand (RANKL) is a functional domain critical for osteoclast differentiation. One of the missense mutations identified in patients with osteoclast-poor autosomal recessive osteopetrosis (ARO) is located in residue methionine 199 that is replaced with lysine (M199K) amid the TNF-like core domain. However, the structure-function relationship of this mutation is not clear. Sequence-based alignment revealed that the fragment containing human M199 is highly conserved and equivalent to M200 in rat. Using site-directed mutagenesis, we generated three recombinant RANKL mutants M200K/A/E (M200s) by replacing the methionine 200 with lysine (M200K), alanine (M200A), and glutamic acid (M200E), representative of distinct physical properties. TRAcP staining and bone pit assay showed that M200s failed to support osteoclast formation and bone resorption, accompanied by impaired osteoclast-related signal transduction. However, no antagonistic effect was found in M200s against wild-type rat RANKL. Analysis of the crystal structure of RANKL predicted that this methionine residue is located within the hydrophobic core of the protein, thus, likely to be crucial for protein folding and stability. Consistently, differential scanning fluorimetry analysis suggested that M200s were less stable. Western blot analysis analyses further revealed impaired RANKL trimerization by M200s. Furthermore, receptor-ligand binding assay displayed interrupted interaction of M200s to its intrinsic receptors. Collectively, our studies revealed the molecular basis of human M199-induced ARO and elucidated the indispensable role of rodent residue M200 (equivalent to human M199) for the RANKL function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.30045DOI Listing

Publication Analysis

Top Keywords

structure-function relationship
8
tnf-like core
8
core domain
8
human m199
8
rankl
7
m200s
6
missense mutation
4
mutation sheds
4
sheds light
4
light novel
4

Similar Publications

The myth of optimality in human movement science.

Neurosci Biobehav Rev

September 2025

Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA. Electronic address:

The concept of optimality dominates contemporary human movement science, with researchers across biomechanics, motor control, and neuroscience routinely explaining observed behaviors as solutions that maximize or minimize objective functions. This paper critiques the pervasive application of optimality principles in human movement science. We argue that optimization frameworks mischaracterize biological systems for several reasons: (1) Evolution produces sufficient rather than optimal adaptations without foresight; (2) Biological systems serve multiple functions simultaneously with context-dependent prioritization; (3) Structure-function relationships co-evolve rather than optimize for fixed targets; (4) The fractal, multiscale nature of physiological signals makes traditional optimization mathematically meaningless-there are no well-defined minima or maxima in fractal landscapes; (5) Optimality models implicitly invoke a homunculus that selects optimization criteria; and (6) The concept is methodologically circular and unfalsifiable, as any behavior can be retroactively modeled as optimal for some function.

View Article and Find Full Text PDF

Baroreflex activation therapy (BAT) improves functional status, quality of life, and exercise capacity in patients with heart failure with reduced ejection fraction; however, its direct effects on reversing adverse cardiac remodeling as assessed by improvements in cardiac structure, function, and coupling with the arterial system remain unclear. We present 2 cases of patients who initially presented with decompensated heart failure, and despite initial medical therapy and continued outpatient follow-up, were unable to tolerate full escalation of guideline-directed medical therapy. The patients remained symptomatic, with high biomarker levels, poor functional capacity, severe heart failure symptoms, and objectively had decreased stroke volume, low left ventricular ejection fraction, and high left ventricular mass.

View Article and Find Full Text PDF

Box of Lessons: An Open Educational Resource for Exploring Biomolecular Structure and Function.

J Coll Sci Teach

March 2025

RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, United States.

Structure-function relationships are a core concept in many STEM disciplines. Most biology curricula introduce students to macromolecules, their building blocks, and other small molecules that play key roles in biological processes. However, the shapes, interactions, and functions of these molecules are often discussed using schematic diagrams, ignoring the vast amounts of three-dimensional structural and bioinformatics data freely available from public data resources.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the focal relationship between choroidal thickness and retinal sensitivity in myopic eyes.

Methods: Participants underwent swept-source optical coherence tomography (SS-OCT) imaging and microperimetry testing. Choroidal thicknesses were obtained by segmenting the SS-OCT scans using a deep-learning approach.

View Article and Find Full Text PDF

Developing Potent Therapeutics for Liver Cancer Chemoresistance via an RNA Nanotech and Series-Circuit-Christmas-Bulb Mechanism Targeting ABC Transporters.

Mol Pharm

September 2025

Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.

Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.

View Article and Find Full Text PDF