Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To examine how host plant genotype, endophytic fungal species, and their interaction may affect growth and key chemical content and composition in an important orchid species, we assessed four Dendrobium catenatum cultivars co-cultured with three fungi previously isolated from D. catenatum. Fungal endophytes (Tulasnella sp., Leptosphaeria microscopica, and Guignardia sp.) specifically affected the growth and chemical composition of the four cultivars. Fungal infection significantly increased certain growth traits, especially mid-stem thickness, stem biomass, stem polysaccharide and ethanol-soluble extractive content, and leaf flavonoid and phenol content. Presence or abundance of some key chemical components was also altered by fungal treatment. These increases and alterations were highly dependent on the host genotype. The findings of this study contribute to our understanding of Dendrobium and endophytic fungi interactions, and provide vital information for improving the development and use of endophytic fungi in D. catenatum breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2020.07.002DOI Listing

Publication Analysis

Top Keywords

endophytic fungi
12
key chemical
12
host genotype
8
chemical components
8
dendrobium catenatum
8
endophytic
4
fungi host
4
genotype interaction
4
interaction influence
4
growth
4

Similar Publications

Locoism refers to a neurological disorder in livestock caused by chronic ingestion of locoweeds, which contain toxic alkaloid swainsonine produced by the fungus . Therefore, reducing swainsonine levels not only prevents locoism but may also transform these toxic plants into animal feed. In this study, we identified a pivotal role for the gene in swainsonine biosynthesis.

View Article and Find Full Text PDF

Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.

Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.

View Article and Find Full Text PDF

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.

View Article and Find Full Text PDF

Argemone mexicana is one of the known herbaceous plants hosting bioactive isoquinoline alkaloids. In the current study, an endophytic fungal isolate was studied for anti-inflammatory potential and the identification of its bioactive molecule. An endophytic fungus AMEF-14 was obtained from this plant and identified as Cladosporium ramotenellum based on microscopy and molecular tools.

View Article and Find Full Text PDF