Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Immunotherapy by chimeric antigen receptor (CAR)-modified T-cells has shown unprecedented clinical efficacy for hematological malignancies. Recently two CAR T-cell based therapeutics, Kymriah (Tisagenlecleucel) and Yescarta (Axicabtagene ciloleucel) were approved by the US Food and Drug Administration and by the European Medicines Agency. Despite the progress in treating hematological malignancies, challenges remain for the use of CAR T-cell therapy in patients with solid tumors. Barriers yet to overcome for achieving effective CAR T-cell therapy include antigenic heterogeneity of solid tumors, an immune-suppressive microenvironment, and organ-specific properties that limit T-cell entry. This review will summarize available clinical data for CAR T-cell therapy in solid tumors, including present obstacles and promising strategies to advancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466853PMC
http://dx.doi.org/10.1080/2162402X.2020.1777064DOI Listing

Publication Analysis

Top Keywords

car t-cell
20
t-cell therapy
16
solid tumors
12
therapy patients
8
hematological malignancies
8
t-cell
6
car
5
current clinical
4
clinical evidence
4
evidence potential
4

Similar Publications

Antibody-based therapies have revolutionized cancer treatment but have several limitations. These include: down-regulation of the target antigen; mutation of the target epitope; or in the case of antibody drug conjugates (ADCs), resistance to the chemotherapy warhead. Since TROP2-targeted therapy with ADCs yields responses in TROP2+ solid tumors but lacks the durability observed with other immunotherapy-based approaches, we developed novel TROP2-targeting chimeric antigen receptor (CAR) T cells as an alternative.

View Article and Find Full Text PDF

Metastatic and relapsed osteosarcoma (OS) remains difficult to treat despite advanced surgical techniques, intensified chemotherapy, and targeted therapies. Adoptive immunotherapies such as chimeric antigen receptor (CAR) T cells, are in their nascent stage, but remain a viable therapeutic strategy for patients with aggressive solid tumors such as OS. Folate receptor- (FOLR1) has been functionally implicated in OS pathophysiology, providing rationale as a potential therapeutic target.

View Article and Find Full Text PDF

Lymphoma-associated hemophagocytic lymphohistiocytosis (LA-HLH) is a life-threatening hyperinflammatory syndrome, and hierarchical management based on a prognostic model is important. The endothelial activation and stress index (EASIX) score has demonstrated prognostic utility in recipients of allogeneic stem cell transplantation and chimeric antigen receptor (CAR) T-cell therapy. However, its role in LA-HLH remains unestablished.

View Article and Find Full Text PDF

Objective: Chimeric antigen receptor T-cell immunotherapy (CAR-T) is a preferred treatment for relapsed or refractory (R/R) large B-cell lymphoma (LBCL). Several trials have evaluated CD20×CD3 bispecific antibodies (BsAbs) as subsequent therapy in R/R LBCL. This study aimed to investigate the efficacy of CD20×CD3 BsAbs (mosunetuzumab, glofitamab, odronextamab, and epcoritamab) in patients with LBCL who experienced relapse or refractory disease following CAR-T therapy.

View Article and Find Full Text PDF

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF