The development of a sub/supercritical fluid chromatography based purification method for peptides.

J Pharm Biomed Anal

Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa. Electronic address:

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Peptide drugs are essential components of the pharmaceutical industry with a multiplicity of therapeutic properties, such as being anti-hypertensive, anti-microbial, anti-diabetic, and having anti-cancer potential. These molecules are similar in physiological structure and function to the body's endogenous signalling molecules and are therefore ideal candidates for the development of the next-generation of drugs. However, the purification of these peptides can be problematic due to poor solubility and stability, which often results in low peptide yields. Peptides are traditionally purified via RP-HPLC methods, which are tedious and employ harsh solvents that generate harmful waste to the environment. There is a growing need for more cost-effective and sustainable purification methods of these biologics. SFC can provide a greener peptide purification approach with more environmentally friendly mobile phases such as CO and methanol, which can easily be recycled with minimal environmental impact. Currently, there is limited knowledge regarding the SFC purification of peptides. Herein, this study investigated SFC methods to purify a tetrapeptide (LYLV), octapeptide (DRVYIHPF), and nonapeptide (LYLVCGERG) on commercially available columns at an analytical scale. The 2-ethyl pyridine column proved to be optimal based on its reproducibility, peak shapes, efficient separations, and retention factors with peptide recoveries ranging from 80 to 102%. The run times were reduced to 13 min, as opposed to the traditional RP-HPLC methods of 50 min, thus making this SFC method an efficient, greener, and more cost-effective approach for the purification of these peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2020.113539DOI Listing

Publication Analysis

Top Keywords

purification peptides
12
rp-hplc methods
8
purification
6
peptides
5
development sub/supercritical
4
sub/supercritical fluid
4
fluid chromatography
4
chromatography based
4
based purification
4
purification method
4

Similar Publications

High-Level Soluble Expression of Recombinant Human Bone Morphogenetic Protein-2 in .

ACS Synth Biol

September 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.

Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.

View Article and Find Full Text PDF

Flammulina velutipes is a major edible fungus with abundant yield and mature industrial production technology. Its main functional component, Flammulina velutipes polysaccharide, has huge development and utilization value. In light of the current uncertainty regarding the mechanisms by which Flammulina velutipes polysaccharides prevent colonic cell pyroptosis, the mechanisms of ultrasound-extracted Flammulina velutipes polysaccharide (FVPU2) in inhibiting colonic cell pyroptosis in mice were investigated, and compared with Flammulina velutipes polysaccharide extracted via hot water extraction (FVPH2).

View Article and Find Full Text PDF

A systematic review on plant-derived hypoglycemic peptides: Biological sources, preparation methods, mechanism of action and structure-activity relationships.

Food Res Int

November 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest Univer

In recent years, various drugs have been proven to effectively alleviate diabetes, but these drugs are associated with serious adverse reactions. Therefore, the development of safer and more effective new hypoglycemic drugs has become a global research focus. Plant-derived hypoglycemic peptides (PDHPs), due to their remarkable hypoglycemic activity and safety, have emerged as potential candidates for preventing and improving symptoms in diabetic patients.

View Article and Find Full Text PDF

Theoretical simulation-guided design and fabrication of molecularly imprinted hydrogels for selective osteopontin separation.

Food Res Int

November 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. Electronic address:

Osteopontin (OPN), a multifunctional milk protein essential for bioactive functions, remains challenging to isolate efficiently due to the limited specificity of conventional methods. We developed hydrogel-based molecularly imprinted membranes (MIMs) for selective OPN recognition. Dimethylaminopropyl methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM) were selected as functional monomers based on molecular docking and molecular dynamics (MD) simulations, ensuring optimized binding interactions.

View Article and Find Full Text PDF

Targeting thrombin to screen safe thrombin inhibitors from natural plants and animals is a critical direction in anticoagulant drug development. This study aimed to screen thrombin inhibitors from the nonbloodsucking leech Whitmania pigra (WP) and elucidate the mechanism of anticoagulation through a "computation-guided experimentation" strategy. A peptide library was constructed from WP hydrolysates, and virtual screening was performed using molecular docking and dynamics simulations.

View Article and Find Full Text PDF