Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A ZnII complex based on a luminescent organic radical was doped into host molecular crystals. The 5, 10, and 20 wt%-doped crystals showed excimer emissions and their luminescent behaviours were significantly modulated by an external magnetic field. These are the first examples showing excimer emissions and magnetic-field-sensitive luminescent properties for complexes based on luminescent radicals. The excimer species contributing to magnetoluminescence was determined by analyzing the emission spectra and their magnetic-field dependencies. These results suggest the general nature of magnetic field effects on the luminescence of radicals as well as the importance of the type of interaction between radicals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc04830eDOI Listing

Publication Analysis

Top Keywords

doped host
8
based luminescent
8
excimer emissions
8
magnetic field
8
excimer
4
excimer emission
4
emission magnetoluminescence
4
magnetoluminescence radical-based
4
radical-based zincii
4
zincii complexes
4

Similar Publications

When pathogenic bacteria colonize a wound, they can create an alkaline ecological niche that selects for their survival by creating an inflammatory environment restricting healthy wound healing to proceed. To aid healing, wound acidification has been exploited to disrupt this process and stimulate fibroblast growth, increase wound oxygen concentrations, minimize proteolytic activity, and restimulate the host immune system. Within this study, we have developed cobalt-doped carbon quantum dot nanoparticles that work together with mild acetic acid, creating a potent synergistic antimicrobial therapy.

View Article and Find Full Text PDF

We report the performance of solid-state ceramic supercapacitors (SSCs) based on a novel composite electrolyte comprising aluminum-doped lithium lanthanum titanate perovskite, LiLaTiAlO (Al-doped LLTO), and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM BF). Rietveld refinement of X-ray diffraction data confirms the preservation of the tetragonal perovskite phase after Al substitution, indicating structural stability of the host lattice. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy further corroborate the successful incorporation of Al without forming secondary phases.

View Article and Find Full Text PDF

Inorganic halide perovskites have been the subject of intensive research for their unique properties. Most current research focuses on halide ion exchange to modify the luminescence band gap and optical features. They are obtained mainly in colloids or thin layers, resulting in small grains with a narrow distribution.

View Article and Find Full Text PDF

The thermodynamic equilibrium assumption often invoked in modeling ion migration in solid-state materials remains insufficient to capture the true migration behavior of Li ions, particularly in less-crystalline superionic conductors that exhibit anomalously high Li ion conductivity. Such materials challenge classical frameworks and necessitate a lattice dynamics-based perspective that explicitly accounts for nonequilibrium phonon interactions and transient structural responses. Here, we uncover a phonon-governed Li ion migration mechanism in garnet-structured superionic conductors by comparing Ta-doped LiLaZrTaO (LLZTO4) to its undoped analogue, LiLaZrAlO (LLZO).

View Article and Find Full Text PDF

The polysulfide shuttling and sluggish sulfur redox kinetics hinder the commercialization of lithium-sulfur (Li-S) batteries. Herein, the fabrication of phosphorus (P)-doped iron telluride (FeTe) nanoparticles with engineered Te vacancies anchored on nitrogen (N)-doped carbon (C) (P-FeTe@NC) is presented as a multifunctional sulfur host. Theoretical and experimental analyses show that Te vacancies create electron-deficient Fe sites, which chemically anchor polysulfides through enhanced Fe─S covalent interactions.

View Article and Find Full Text PDF