98%
921
2 minutes
20
Background: Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transfer rates is a common approach for investigating the electron path from cell to electrode. However, such studies have not explored how the cells' concurrent morphological adaptations to the applied stresses affect electron transfer rates. In this paper, we establish a ratio to quantify this effect in mediated systems and apply it to sp. PCC7942 cells grown under different nutritional regimes.
Results: The results provide evidence that wider and longer cells with larger surface areas have faster mediated electron transfer rates. For rod-shaped cells, increase in cell area as a result of cell elongation more than compensates for the associated decline in mass transfer coefficients, resulting in faster electron transfer. In addition, the results demonstrate that the extent to which morphological adaptations account for the changes in electron transfer rates changes over the bacterial growth cycle, such that investigations probing physiological and metabolic changes are meaningful only at certain time periods.
Conclusion: A simple ratio for quantitatively evaluating the effects of cell morphology adaptations on electron transfer rates has been defined. Furthermore, the study points to engineering cell shape, either via environmental conditioning or genetic engineering, as a potential strategy for improving the performance of biophotovoltaic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449014 | PMC |
http://dx.doi.org/10.1186/s13068-020-01788-8 | DOI Listing |
J Inorg Biochem
September 2025
National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA. Electronic address:
Flavin-based electron bifurcation (FBEB) is employed by microorganisms for controlling pools of redox equivalents by reversibly splitting electron pairs into high- and low-energy levels from an initial midpoint potential. Our ability to harness this phenomenon is crucial for biocatalytic design which is limited by our understanding of energy coupling in the bifurcation system. In Pyrococcus furiosus, FBEB is carried out by the NADH-dependent ferredoxin:NADP-oxidoreductase (NfnSL), coupling the uphill reduction of ferredoxin in NfnL to the downhill reduction of NAD in NfnS from oxidation of NADPH.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310058, China.
We report an electro-enhanced catalytic etching approach for direct atomic-level patterning of single-crystal 4H-SiC (0001) surfaces. The process utilizes platinum-coated probes under a negative sample bias, which enhances catalytic reactions and promotes etching of SiC without additional mechanical load. Unlike traditional etching approaches that rely on hazardous chemicals such as hydrofluoric acid, this approach operates under ambient conditions, offering improved safety and environmental compatibility.
View Article and Find Full Text PDFJ Med Microbiol
September 2025
Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
is an opportunistic fungal pathogen that causes pulmonary cryptococcosis, or an acute or chronic infection in the lungs, and cryptococcal meningitis, an infection of the brain and spinal column, in immunocompromised individuals. Fungal infections are responsible for ~1.7 million deaths each year.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
Metal-organic frameworks (MOFs) are distinguished by their structural diversity, tunable electronic properties, and exceptional performance in various applications. Notably, the electron-donating ability of ligands significantly enhances the ligand-to-metal charge transfer (LMCT) processes within these frameworks, thereby promoting efficient charge migration. Herein, we developed two electron-rich macrocyclic ligands derived from phenothiazine- and phenoxazine-functionalized calix[3]arenes, alongside their corresponding cobalt-coordinated MOFs.
View Article and Find Full Text PDF