Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and metastasis. Thus, blocking AR activity and its downstream signaling constitutes a major strategy for PCa treatment. Here, we report on the potent anti-PCa activity of a small-molecule imidazoacridinone, C-1311. In AR-positive PCa cells, C-1311 was found to inhibit the transcriptional activity of AR, uncovering a novel mechanism that may be relevant for its anticancer effect. Mechanistically, C-1311 decreased the AR binding to the prostate-specific antigen () promoter, reduced the PSA protein level, and, as shown by transcriptome sequencing, downregulated numerous AR target genes. Importantly, AR-negative PCa cells were also sensitive to C-1311, suggesting a promising efficacy in the androgen-independent PCa sub-type. Irrespective of AR status, C-1311 induced DNA damage, arrested cell cycle progression, and induced apoptosis. RNA sequencing indicated significant differences in the transcriptional response to C-1311 between the PCa cells. Gene ontology analysis showed that in AR-dependent PCa cells, C-1311 mainly affected the DNA damage response pathways. In contrast, in AR-independent PCa cells, C-1311 targeted the cellular metabolism and inhibited the genes regulating glycolysis and gluconeogenesis. Together, these results indicate that C-1311 warrants further development for the treatment of PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555468PMC
http://dx.doi.org/10.3390/biomedicines8090292DOI Listing

Publication Analysis

Top Keywords

pca cells
20
cells c-1311
12
c-1311
10
pca
9
imidazoacridinone c-1311
8
prostate cancer
8
dna damage
8
cells
6
anticancer imidazoacridinone
4
c-1311 effective
4

Similar Publications

Prior research suggested the potential correlation between circulating immune cell phenotypes and prostate cancer (PCa). However, it remains unclear whether the correlation can be mediated by plasma metabolites. We performed a bidirectional 2-sample, 2-step Mendelian randomization (MR) study mainly utilizing the inverse variance weighted method to examine the causal role of circulating immunophenotypes on PCa and explore the mediation effect of plasma metabolites in the pathway from immunophenotypes to PCa.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a type of malignancy that originates in the prostate gland, often characterized by uncontrolled cell growth and potential metastasis. Long non-coding RNAs (lncRNAs) play crucial regulatory roles in the progression of prostate cancer, potentially facilitating tumor growth and metastasis via mechanisms that involve the enhancement of aerobic glycolysis. This study aimed to investigate the functional role of lncRNA HANR in prostate cancer progression.

View Article and Find Full Text PDF

Stage IV prostate cancer (PCa) refers to a disease that has metastasized beyond the prostate gland to distant sites, such as bones, visceral organs, or non-regional lymph nodes. While early attempts at curative therapy were occasionally made in oligometastatic cases, current guidelines uniformly recommend palliative-intent management once true metastatic spread is confirmed. Over the past decade, treatment paradigms have shifted from androgen deprivation therapy (ADT) monotherapy to earlier intensification with combination regimens including chemo-hormonal therapy and next-generation hormonal agents to improve survival and quality of life (QoL).

View Article and Find Full Text PDF

UHMK1 Promotes Prostate Cancer Progression through a Positive Feedback Loop with MTHFD2.

Oncol Res

September 2025

Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.

Background: U2AF homology motif kinase 1 (UHMK1) has been associated with RNA processing and protein phosphorylation, thereby influencing tumor progression. The study aimed to explore its regulatory mechanisms and biological functions in human prostate cancer (PCa).

Methods: In this study, we systematically evaluated the expression and prognostic significance of UHMK1 in public databases, followed by validation through immunohistochemistry (IHC) in PCa specimens.

View Article and Find Full Text PDF

In the study of prostate diseases, the microenvironment associated with chronic prostatitis is characterized by abnormal activation of immune cells, leading to excessive accumulation of pro-inflammatory factors and an imbalance in the antioxidant defense system. This results in the overproduction of reactive oxygen species (ROS) and the subsequent triggering of oxidative stress. Oxidative stress persistently disrupts the homeostasis of prostate tissue through various mechanisms, including the damage to biomacromolecules, the regulation of inflammatory pathways, and the induction of apoptosis.

View Article and Find Full Text PDF