98%
921
2 minutes
20
Background: Pulmonary atelectasis is frequent in clinical settings. Yet there is limited mechanistic understanding and substantial clinical and biologic controversy on its consequences. The authors hypothesize that atelectasis produces local transcriptomic changes related to immunity and alveolar-capillary barrier function conducive to lung injury and further exacerbated by systemic inflammation.
Methods: Female sheep underwent unilateral lung atelectasis using a left bronchial blocker and thoracotomy while the right lung was ventilated, with (n = 6) or without (n = 6) systemic lipopolysaccharide infusion. Computed tomography guided samples were harvested for NextGen RNA sequencing from atelectatic and aerated lung regions. The Wald test was used to detect differential gene expression as an absolute fold change greater than 1.5 and adjusted P value (Benjamini-Hochberg) less than 0.05. Functional analysis was performed by gene set enrichment analysis.
Results: Lipopolysaccharide-unexposed atelectatic versus aerated regions presented 2,363 differentially expressed genes. Lipopolysaccharide exposure induced 3,767 differentially expressed genes in atelectatic lungs but only 1,197 genes in aerated lungs relative to the corresponding lipopolysaccharide-unexposed tissues. Gene set enrichment for immune response in atelectasis versus aerated tissues yielded negative normalized enrichment scores without lipopolysaccharide (less than -1.23, adjusted P value less than 0.05) but positive scores with lipopolysaccharide (greater than 1.33, adjusted P value less than 0.05). Leukocyte-related processes (e.g., leukocyte migration, activation, and mediated immunity) were enhanced in lipopolysaccharide-exposed atelectasis partly through interferon-stimulated genes. Furthermore, atelectasis was associated with negatively enriched gene sets involving alveolar-capillary barrier function irrespective of lipopolysaccharide (normalized enrichment scores less than -1.35, adjusted P value less than 0.05). Yes-associated protein signaling was dysregulated with lower nuclear distribution in atelectatic versus aerated lung (lipopolysaccharide-unexposed: 10.0 ± 4.2 versus 13.4 ± 4.2 arbitrary units, lipopolysaccharide-exposed: 8.1 ± 2.0 versus 11.3 ± 2.4 arbitrary units, effect of lung aeration, P = 0.003).
Conclusions: Atelectasis dysregulates the local pulmonary transcriptome with negatively enriched immune response and alveolar-capillary barrier function. Systemic lipopolysaccharide converts the transcriptomic immune response into positive enrichment but does not affect local barrier function transcriptomics. Interferon-stimulated genes and Yes-associated protein might be novel candidate targets for atelectasis-associated injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7572680 | PMC |
http://dx.doi.org/10.1097/ALN.0000000000003491 | DOI Listing |
Br J Health Psychol
September 2025
Manchester Centre for Health Psychology, School of Health Sciences, University of Manchester, Manchester, UK.
Objective: This study applied the Theoretical Domains Framework (TDF) to explore the barriers and enablers to optimizing post-operative pain management and supporting safe opioid use from the perspectives of both patients and health care professionals, applying the Theoretical Domains Framework (TDF).
Design: Experience-based co-design (EBCD) qualitative study.
Methods: In the initial phase of the EBCD approach, focus groups were conducted comprising 20 participants, including 8 patients and 12 health care professionals involved in post-operative care.
CNS Neurosci Ther
September 2025
Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
Aims: Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.
Methods: We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation.
Adv Mater
September 2025
Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.
View Article and Find Full Text PDFJ Innate Immun
August 2025
Piezo-type mechanosensitive ion channel component 1 (Piezo1) is an evolutionarily conserved and multifunctional mechanosensitive ion channel protein that has emerged as a significant contributor to the pathogenesis of inflammatory bowel disease (IBD). Piezo1 plays a crucial role in regulating intestinal barrier integrity, immune responses, and the intestinal nervous system, thereby influencing disease progression. Its expression patterns correlate with disease severity and inflammatory markers in IBD patients, indicating its potential as a diagnostic and prognostic biomarker.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Enhancing the energy conversion efficiency of fuel cells necessitates optimization of oxygen reduction reaction (ORR) under high-voltage conditions through improved Pt catalysis. This study introduces an electrocatalyst that uniformly anchors a high loading (40 wt%) of small Pt nanoparticles (3.2 nm) on a novel support: tellurium and nitrogen co-mediated graphitized mesoporous carbon (Te-N-GMC).
View Article and Find Full Text PDF