98%
921
2 minutes
20
Significance: Photobiomodulation (PBM) refers to the beneficial effects of low-energy light absorption. Although there is a large body of literature describing downstream physiological benefits of PBM, there is a limited understanding of the molecular mechanisms underlying these effects. At present, the most popular hypothesis is that light absorption induces release of nitric oxide (NO) from the active site of cytochrome c oxidase (COX), allowing it to bind O2 instead. This is believed to increase mitochondrial respiration, and result in greater overall health of the cell due to increased adenosine triphosphate production.
Aim: Although NO itself is a powerful signaling molecule involved in a host of biological responses, less attention has been devoted to NO mechanisms in the context of PBM. The purpose of our work is to investigate wavelength-specific effects on intracellular NO release in living cells.
Approach: We have conducted in-depth dosimetry analyses of NO production and function in an in vitro retinal model in response to low-energy exposure to one or more wavelengths of laser light.
Results: We found statistically significant wavelength-dependent elevations (10% to 30%) in intracellular NO levels following laser exposures at 447, 532, 635, or 808 nm. Sequential or simultaneous exposures to light at two different wavelengths enhanced the NO modulation up to 50% of unexposed controls. Additionally, the immediate increases in cellular NO levels were independent of the function of NO synthase, depended greatly on the substrate source of electrons entering the electron transport chain, and did not result in increased levels of cyclic guanosine monophosphate.
Conclusions: Our study concludes the simple model of light-mediated release of NO from COX is unlikely to explain the wide variety of PBM effects reported in the literature. Our multiwavelength method provides a novel tool for studying immediate and early mechanisms of PBM as well as exploring intracellular NO signaling networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423318 | PMC |
http://dx.doi.org/10.1117/1.JBO.25.8.085001 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.
The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.
View Article and Find Full Text PDFAmino Acids
September 2025
Colorectal Research Center, Iran University of Medical Sciences, Tehran, 1445613131, Iran.
Anal fissure causes pain and bleeding during or after bowel movements, significantly impacting individuals' quality of life. Current treatments aim to interrupt this cycle but have associated risks and limitations. The emergence of arginine, crucial for protein creation and nitric oxide (NO) production, presents an intriguing therapeutic avenue by the impact on reducing anal sphincter pressure and enhancing anoderm blood flow, due to its roles in vasodilation, anti-inflammatory responses, and collagen synthesis, which can promote wound healing and highlighting its potential as an alternative therapy.
View Article and Find Full Text PDFWorld J Urol
September 2025
Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.
Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.
J Nat Prod
September 2025
College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
LC-HRMS/MS-based molecular-network-guided chemical investigation of led to the isolation of seven undescribed tetrasaccharide-type resin glycosides (-). Their structures were elucidated using 1D and 2D NMR and HRESIMS analysis. Isolated resin glycosides were comprised of d-glucose, d-fucose, d-quinovose, and l-rhamnose, and these monosaccharides were partially acylated with acetyl, isobutyryl, -hexanoyl, and niloyl organic acids.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.
View Article and Find Full Text PDF