Highly dynamic, coordinated, and stage-specific profiles are revealed by a multi-omics integrative analysis during tuberous root development in cassava.

J Exp Bot

Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cassava (Manihot esculenta) is an important starchy root crop that provides food for millions of people worldwide, but little is known about the regulation of the development of its tuberous root at the multi-omics level. In this study, the transcriptome, proteome, and metabolome were examined in parallel at seven time-points during the development of the tuberous root from the early to late stages of its growth. Overall, highly dynamic and stage-specific changes in the expression of genes/proteins were observed during development. Cell wall and auxin genes, which were regulated exclusively at the transcriptomic level, mainly functioned during the early stages. Starch biosynthesis, which was controlled at both the transcriptomic and proteomic levels, was mainly activated in the early stages and was greatly restricted during the late stages. Two main branches of lignin biosynthesis, coniferyl alcohol and sinapyl alcohol, also functioned during the early stages of development at both the transcriptomic and proteomic levels. Metabolomic analysis further supported the stage-specific roles of particular genes/proteins. Metabolites related to lignin and flavonoid biosynthesis showed high abundance during the early stages, those related to lipids exhibited high abundance at both the early and middle stages, while those related to amino acids were highly accumulated during the late stages. Our findings provide a comprehensive resource for broadening our understanding of tuberous root development and will facilitate future genetic improvement of cassava.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eraa369DOI Listing

Publication Analysis

Top Keywords

tuberous root
16
early stages
16
late stages
12
highly dynamic
8
root development
8
development tuberous
8
stages
8
functioned early
8
transcriptomic proteomic
8
proteomic levels
8

Similar Publications

While plants adapt to fluctuating phosphorus (P) availability in soils by enhancing phosphate acquisition or optimizing internal P-utilization, the spatiotemporal dynamics of these responses, particularly in crops, remain poorly understood. This study systematically investigated how and when potato organs respond to fluctuating P availability across different developmental stages using transcriptomic, metabolomic, and physiological analyses of leaves, roots, and tubers. Transcriptomic data revealed dynamic, organ- and stage-specific responses to P-deficiency, with the highest number of differentially expressed genes in leaves before tuberization and in roots during tuberization.

View Article and Find Full Text PDF

is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable application of nitrogen fertilizers. In this study, based on uniform application of phosphorus and potassium fertilizers, six nitrogen application levels were set in pot experiments (expressed as N): N0: 0 kg/ha, N1: 208.

View Article and Find Full Text PDF

Phytosanitary Challenges and Solutions for Roots and Tubers in the Tropics.

Annu Rev Phytopathol

September 2025

Department of Plant Pathology and Global Food Systems Institute, University of Florida, Gainesville, Florida, USA.

Vegetatively propagated crops such as cassava, potato, sweetpotato, and yam, or roots and tubers (RTs), play a major role in food security in low- and middle-income countries, yet phytosanitary issues in the tropics lead to substantial yield and quality losses. Challenges to production include institutional limitations that prevent effective responses and potential buildup of pathogens during clonal propagation. Addressing these challenges in a climate change context and diverse sociocultural environments requires a multifaceted approach, including improving access and availability to clean seed by strengthening seed systems; breeding for host resistance and disseminating resistant varieties; strengthening on-farm seed management; and designing effective policies and regulations to deal with seedborne diseases.

View Article and Find Full Text PDF

Background: In China, L. is primarily cultivated for its underground parts-rhizomes (commonly known as turmeric) and tubers (Yujin), with the latter holding greater market value. However, current cultivation practices in China remain largely traditional, lacking scientific optimization in nutrient management, growth cycle alignment, or soil fertility strategies.

View Article and Find Full Text PDF

Integrative metabolomic and transcriptomic analysis provides insight into the mechanism of pigmentation in potato tuber eyes.

BMC Plant Biol

August 2025

Yunnan Branch of National Potato Improvement Center, Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.

Background: The pigmentation of tuber eyes serves as a critical morphological marker for distinguishing potato varieties, yet the molecular mechanisms underlying localized pigmentation in tuber eyes remain largely unexplored. In this study, localized pigmentation around the tuber eyes of a potato variety named M4, which produces tubers with yellow and red eyes, was studied via targeted and untargeted metabolomics and transcriptome profiling.

Results: A comparison of the yellow and red tuber eyes revealed that the main differentially accumulated metabolites (DAMs) were pelargonidin, cyanidin, and peonidin, leading to the red pigmentation surrounding the tuber eyes.

View Article and Find Full Text PDF