Leveraging computational genomics to understand the molecular basis of metal homeostasis.

New Phytol

Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genome-based data is helping to reveal the diverse strategies plants and algae use to maintain metal homeostasis. In addition to acquisition, distribution and storage of metals, acclimating to feast or famine can involve a wealth of genes that we are just now starting to understand. The fast-paced acquisition of genome-based data, however, is far outpacing our ability to experimentally characterize protein function. Computational genomic approaches are needed to fill the gap between what is known and unknown. To avoid misconstruing bioinformatically derived data, which is the root cause of the inaccurate functional annotations that plague databases, functional inferences from diverse sources and contextualization of that evidence with a robust understanding of protein family evolution is needed. Phylogenomic- and comparative-genomic-based studies can aid in the interpretation of experimental data or provide a spark for the discovery of a new function. These analyses not only lead to novel insight into a target protein's function but can generate thought-provoking insights across protein families.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.16820DOI Listing

Publication Analysis

Top Keywords

metal homeostasis
8
genome-based data
8
leveraging computational
4
computational genomics
4
genomics understand
4
understand molecular
4
molecular basis
4
basis metal
4
homeostasis genome-based
4
data
4

Similar Publications

Acute endocrine disrupting effect of fine particulate constituents on thyroid homeostasis: A multicenter cross-sectional study in China.

Ecotoxicol Environ Saf

September 2025

China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environm

New evidence has revealed ambient fine particulate matter < 2.5 μm (PM) may have endocrine disrupting effect, such as thyroid hormone disorder, while which PM constituents contributed to the effect was debatable. The study aimed to identify the specific PM constituents regarding to acute endocrine disrupting effect.

View Article and Find Full Text PDF

Hepcidin is the key hyposideremic hormone produced primarily by the liver. However, recent reports reveal extra-hepatic functional sources of hepcidin, including the intestine, the site of dietary iron absorption. To determine whether intestinal hepcidin may play a role in plasma iron lowering, we generated transgenic mice overexpressing the peptide specifically in this tissue.

View Article and Find Full Text PDF

Conductive Microneedle Patch with Mitochondria-Localized Generation of Nitric Oxide Promotes Heart Repair after Ischemia-Reperfusion Therapy.

Small Methods

September 2025

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China.

Timely blood resupply is a clinical strategy to treat myocardial infarction, which unavoidably causes myocardial ischemia-reperfusion injury. With disturbed electrical conduction and oxidative stress in infarcted myocardium, injured heart experiences a negative ventricle remodeling process, and finally leads to heart failure. Nitric oxide (NO) is a short-lived signaling molecule regulating cardiovascular homeostasis, while vasodilation of systemic vasculature is accompanied by its exogenous supplementation.

View Article and Find Full Text PDF

Excessive gestational weight gain (GWG) is associated with various adverse pregnancy outcomes, including disruption of placental function and fetal development. Iron transport through the placenta is crucial for fetal growth, and transferrin receptor 2 (TfR2) plays a key role in iron homeostasis. However, the effect of excessive GWG on placental TfR2 expression and neonatal iron parameters remains unclear.

View Article and Find Full Text PDF

Development of Zebrafish model for Iron Induced Neuroinflammation.

Fish Physiol Biochem

September 2025

Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, 56, India.

Zebrafish models have been used to research Alzheimer's disease and other neurodegenerative disorders because of their similarities to the human genetic composition and behavior. Researchers have detected iron accumulation in the post-mortem brain sections of neurodegenerative disorder patients. Therefore, the development an animal model to simulate these clinical pathological findings is important.

View Article and Find Full Text PDF