98%
921
2 minutes
20
The metal halide perovskite nanocrystal (MHP-NC), an easy-to-fabricate and low cost fluorescent material, is recognized to be among the promising candidates of the color conversion material in the micro light-emitting diode (micro-LED) display, providing that the stability can be further enhanced. It is found that the water steam, oxygen, thermal radiation and light irradiation-four typical external factors in the ambient environment related to micro-LED display-can gradually alter and destroy the crystal lattice. Despite the similar phenomena of photoluminescence quenching, the respective encroaching processes related to these four factors are found to be different from one another. The encroaching mechanisms are collected and introduced in separate categories with respect to each external factor. Thereafter, a combined effect of these four factors in an environment mimicking real working conditions of micro-LED display are also introduced. Finally, recent progress on the full-color application of MHP-NC is also reviewed in brief.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408616 | PMC |
http://dx.doi.org/10.3390/nano10071375 | DOI Listing |
J Am Chem Soc
September 2025
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
The direct cross-coupling of unactivated alkyl halides with aryl or heteroaryl partners remains a fundamental challenge in synthetic chemistry due to their inertness and propensity for side reactions. Herein, we report a transition-metal-free electrochemical halogen-atom transfer strategy that enables efficient alkyl radical cross-coupling via convergent paired electrolysis. In this system, anodically generated α-aminoalkyl radicals mediate the activation of alkyl iodides, while aryl/heteroaryl aldehydes or nitriles undergo cathodic reduction to afford persistent ketyl radical anions or aryl radical anions.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Ur
Birefringent crystals are pivotal for modern optical modulation technologies, yet developing high-performance birefringent materials with large birefringence (Δn), wide bandgaps, and scalable synthesis remains a significant challenge. Different from the traditional planar [MQ] and distorted [MQ] (n ≥ 4) polyhedral units, a "linear-group" design strategy is proposed, targeting heavy-metal halides with [HgX] (X = halides) coordination modes to exploit their inherent polarizability anisotropy. Through systematic experimental investigations in the ternary A-Hg-X (A = Rb, Cs; X = Br, I) system, six novel Hg-based halides were synthesized.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.
Metal halide perovskites have garnered significant attention due to their exceptional photoelectric properties. The alkali metal doping strategy has been demonstrated to effectively modulate grain size, control crystallization kinetics, and adjust band gap characteristics in perovskite. This study employs the first-principles calculations to reveal that the selection of alkali metal species and their corresponding doping methodologies exert markedly distinct influences on both the electronic properties and ion migration kinetics of CsPbBr perovskites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, and Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China.
Despite the widespread utility of transition metal-catalyzed cross-couplings in organic synthesis, the coupling of unactivated alkyl electrophiles remains challenging due to sluggish oxidative addition and competing side reactions. Here, we describe a general and practical copper-catalyzed radical deoxyalkynylation of α-unfunctionalized alcohols through a synergistic combination of Barton-McCombie deoxygenation and copper-catalyzed radical cross-coupling. Key to the success of this method lies in not only the development of rigid anionic multiple N,N,N-ligand to exert remarkable selectivity of highly reactive unactivated alkyl radicals, but also the selection of one suitable oxidant to suppress Glaser homocoupling and other side products.
View Article and Find Full Text PDF