Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Viruses promote infection by hijacking the ubiquitin machinery of the host to counteract or redirect cellular processes. Adenovirus encodes two early proteins, E1B55K and E4orf6, that together co-opt a cellular ubiquitin ligase complex to overcome host defences and promote virus production. Adenovirus mutants lacking E1B55K or E4orf6 display defects in viral RNA processing and protein production, but previously identified substrates of the redirected ligase do not explain these phenotypes. Here, we used a quantitative proteomics approach to identify substrates of E1B55K/E4orf6-mediated ubiquitination that facilitate RNA processing. While all currently known cellular substrates of E1B55K and E4orf6 are degraded by the proteasome, we uncovered RNA-binding proteins as high-confidence substrates that are not decreased in overall abundance. We focused on two RNA-binding proteins, RALY and hnRNP-C, which we confirm are ubiquitinated without degradation. Knockdown of RALY and hnRNP-C increased levels of viral RNA splicing, protein abundance and progeny production during infection with E1B55K-deleted virus. Furthermore, infection with E1B55K-deleted virus resulted in an increased interaction of hnRNP-C with viral RNA and attenuation of viral RNA processing. These data suggest that viral-mediated ubiquitination of RALY and hnRNP-C relieves a restriction on viral RNA processing and reveal an unexpected role for non-degradative ubiquitination in the manipulation of cellular processes during virus infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529849PMC
http://dx.doi.org/10.1038/s41564-020-0750-9DOI Listing

Publication Analysis

Top Keywords

viral rna
24
rna processing
20
e1b55k e4orf6
12
raly hnrnp-c
12
cellular processes
8
rna-binding proteins
8
infection e1b55k-deleted
8
e1b55k-deleted virus
8
virus infection
8
rna
7

Similar Publications

Neuroinflammatory Consequences of Rhinovirus Infection in Human Epithelial and Neuronal Models.

Lung

September 2025

The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.

Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.

View Article and Find Full Text PDF

RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing that can be induced via the exongenous application of dsRNA. Due to its high specificity, dsRNA-based biopesticides are being developed to control pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive.

View Article and Find Full Text PDF

Novel alternative transcripts of TLR8 and TLR9 reveal evolutionary pressure to conserve protein structure.

Biochimie

September 2025

Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.

TLR8 and TLR9 are innate immune receptors belonging to the TLR family that are essential for viral recognition and early immune activation. Their dysfunction is linked to increased susceptibility to infections. TLR8 detects viral single- and double-stranded RNA, while TLR9 recognizes viral DNA molecules with CpG motifs.

View Article and Find Full Text PDF

Structural Dynamics of Dengue Virus UTRs and Their Cyclization.

Biophys J

September 2025

Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, Alberta, Canada; Department of Microbiology, Immunology

The dengue virus (DENV) poses a significant threat to human health, accounting for approximately 400 million infections each year. Its genome features a circular structure that facilitates replication through long-range RNA-RNA interactions, utilizing cyclization sequences located in the untranslated regions (UTRs). To gain new insights into the organization of the DENV genome, we purified the 5' and 3' UTRs of DENV in vitro and examined their structural and binding properties using various biophysical techniques combined with computational methods.

View Article and Find Full Text PDF

Machine learning-based identification of a transcriptomic blood signature discriminating between systemic autoimmunity and infection.

Med

August 2025

Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece. Electronic address: p

Background: Pathogenic responses against self and foreign antigens in systemic autoimmunity and infection, respectively, engage similar immunologic components, thus lacking distinguishing diagnostic biomarkers. Herein, we tested whether whole-blood transcriptome analysis discriminates autoimmune from infectious diseases.

Methods: We applied nested cross-validation methodology to tune and validate random forests, k-nearest neighbors, and support vector machines, using a new preprocessing method on 22 publicly available datasets, including 594 patients with a broad spectrum of systemic autoimmune diseases and 615 patients with diverse viral, bacterial, and parasitic infections.

View Article and Find Full Text PDF