Publications by authors named "Isabel Cervera"

TLR8 and TLR9 are innate immune receptors belonging to the TLR family that are essential for viral recognition and early immune activation. Their dysfunction is linked to increased susceptibility to infections. TLR8 detects viral single- and double-stranded RNA, while TLR9 recognizes viral DNA molecules with CpG motifs.

View Article and Find Full Text PDF

One of the most well-known viral receptors of the group called named ALRs is IFI16 (interferon-inducible protein 16) that are responsible for responses against viral dsDNA. A pyrin domain (PYD), two HIN domains, a NLS (nuclear localization sequence), and S/T/P repeats region form the structure of IFI16. Five alternatively transcripts have been described (V1, V2, V9, V4 and Vβ) that encode five isoforms (IFI16-iso1, 2, 3, 4 and β) with different structure, localization, and function.

View Article and Find Full Text PDF

Class IA PI3K p110δ and p110α subunits participate in TCR and costimulatory receptor signals involved in T cell-mediated immunity, but the role of p110α is not completely understood. Here, we analyzed a mouse model of the Cre-dependent functional inactivation of p110α (kinase dead) in T lymphocytes (p110αKD-T, KD). KD mice showed increased cellularity in thymus and spleen and altered T cell differentiation with increased number of CD4CD8 DP thymocytes, enhanced proportion of CD4 SP lymphocytes linked to altered apoptosis, lower Treg cells, and increased AKT and ERK phosphorylation in activated thymocytes.

View Article and Find Full Text PDF

Retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), including RIG-I, MDA5 and LGP2, recognize viral RNA to mount an antiviral interferon (IFN) response RLRs share three different protein domains: C-terminal domain, DExD/H box RNA helicase domain, and an N-terminal domain with two tandem repeats (CARDs). LGP2 lacks tandem CARD and is not able to induce an IFN response. However, LGP2 positively enhances MDA5 and negatively regulates RIG-I signaling.

View Article and Find Full Text PDF

Fast, high-throughput methods for measuring the level and duration of protective immune responses to SARS-CoV-2 are needed to anticipate the risk of breakthrough infections. Here we report the development of two quantitative PCR assays for SARS-CoV-2-specific T cell activation. The assays are rapid, internally normalized and probe-based: qTACT requires RNA extraction and dqTACT avoids sample preparation steps.

View Article and Find Full Text PDF

Long-term hemodialysis (HD) patients are considered vulnerable and at high-risk of developing severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection due to their immunocompromised condition. Since COVID-19 associated mortality rates are higher in HD patients, vaccination is critical to protect them. The response towards vaccination against COVID-19 in HD patients is still uncertain and, in particular the cellular immune response is not fully understood.

View Article and Find Full Text PDF

The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. In this study, we characterize SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during and after two doses of BNT162b2 vaccination.

View Article and Find Full Text PDF

Generation of the HLA-B*15 group of alleles has been analyzed using exon 1, intron 1, exon 2, intron 2, and exon 3 sequences from human and nonhuman primates. Results indicated that the 230 alleles analyzed could be grouped into 5 different lineages of evolution coming from nonhuman primate MHC-B* alleles sharing characteristic nucleotide sequences. The major evolutionary mechanism of evolution in this group of alleles is the gene conversion event with the exchange of genomic sequences present in other HLA-B*alleles.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA)-G alleles follow a different pattern of polymorphism generation from those of the HLA classical I alleles. These polymorphisms have been defined as a result of random permitted point mutations in exons. However, this polymorphism maintenance could have an evolutionary specific pathways based on noncoding regions as introns, 14-bp deletion/insertion (exon 8), or promoter regions.

View Article and Find Full Text PDF

Rotavirus evolves by using multiple genetic mechanisms which are an accumulation of spontaneous point mutations and reassortment events. Other mechanisms, such as cross-species transmission and inter-genotype recombination, may be also involved. One of the most interesting genotypes in the accumulation of these events is the G3 genotype.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA)-G is a human nonclassic major histocompatibility complex (MHC) molecule characterized by a limited polymorphism and a low, restricted cell surface expression. HLA-G is constitutively expressed on trophoblasts, fetal endothelial, and epithelial cells, conferring alloimmune protection during pregnancy. HLA-G is also expressed in some malignancies and on macrophages and dendritic cells (DC) in tumoral and inflammatory diseases.

View Article and Find Full Text PDF

Background: G9 rotavirus genotype was isolated in the 1980s and re-emerged without a clear explanation in the mid-1990s as one of the most frequently occurring genotypes with distinct genetic and molecular characteristics.

Objectives: To study the G9 genotype sequence polymorphisms in Spain and compare them with the human and porcine G9 VP7 genes from the rest of the world. Complete phylogenetic analyses have been done to better characterize G9 genotypes, their relationships and evolution.

View Article and Find Full Text PDF

The generation of the human leukocyte antigen (HLA)-B*1516, B*1517, B*1567, and B*1595 alleles has been analyzed using exon 1, intron 1, exon 2, intron 2, and exon 3 sequences from human and non-human primates. Results showed that at the first place three evolutionary steps would have been necessary for the generation of HLA-B*1516 and B*1517 alleles: (1) a non-human primate step with the generation of a major histocompatibility complex (MHC)-B*1516/1517-like allele; (2) a human or non-human primate step with two different ways of evolution generating a MHC-B*1516 and a MHC-B*1517 ancestors; and (3) a human step consisting of the generation of HLA-B*1516 and HLA-B*15170101 alleles. After that, HLA-B*1567, B*1595 B*151701012, and B*151702 alleles would be generated by point mutation events.

View Article and Find Full Text PDF