98%
921
2 minutes
20
Nanoparticle (NP)-based targeted drug delivery is intended to transport therapeutically active molecules to specific cells and particular intracellular compartments. However, there is limited knowledge regarding the complete route of NPs in this targeting scenario. In this study, simultaneously performing motion and dynamic pH sensing using single-particle tracking (SPT) leads to an alternative method of gaining insights into the mesoporous silica nanoparticle's (MSN) journey in targeting lysosome. Two different pH-sensitive dyes and a reference dye are incorporated into mesoporous silica nanoparticles (MSNs) co-condensation to broaden the measurable pH range (pH 4-7.5) of the nanoprobe. The phosphonate, amine, and lysosomal sorting peptides (YQRLGC) are conjugated onto the MSN's surface to study intracellular nano-biointeractions of two oppositely charged and lysosome-targetable MSNs. The brightness and stability of these MSNs allow their movement and dynamic pH evolution during their journey to be simultaneously monitored in real time. Importantly, a multidimensional analysis of MSN's movement and local pH has revealed new model intracellular dynamic states and distributions of MSNs, previously inaccessible when using single parameters alone. A key result is that YQRLGC-conjugated MSNs took an alternative route to target lysosomes apart from the traditional one, which sped up to 4 h and enhanced their targeting efficiency (up to 32%). The findings enrich our understanding of the intracellular journey of MSNs. This study offers complementary information on correlating the surface design with the full pathway of nanoparticles to achieve targeted delivery of therapeutic payload.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c07917 | DOI Listing |
Biomater Res
September 2025
Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
Atherosclerosis is the leading cause of global cardiovascular morbidity and mortality associated with inflammatory and immunological mechanisms. Immunotherapy has demonstrated promising efficacy in the management of atherosclerosis. Nevertheless, certain immunotherapeutic approaches are associated with limitations, including suboptimal efficacy and non-negligible adverse effects.
View Article and Find Full Text PDFPlant Dis
September 2025
Hainan University, Haikou, Hainan, China;
Brown root rot, caused by Phellinus noxius, is a major threat to rubber tree cultivation, resulting in substantial economic losses. Traditional control methods, such as root irrigation with fungicides, are labor-intensive, water-consuming, and inefficient, particularly in regions with limited water resources. This study introduces fluorescent mesoporous silica nanoparticles (FL-MSNs) as a novel delivery platform for tebuconazole to target P.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China. Electronic address:
Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
The formation of carbinolamine represents the crucial initial step in the aldol reaction, specifically involving the interaction between p-nitrobenzaldehyde and acetone, facilitated by amine-catalyzed mesoporous silica nanoparticles (amine-MSN). In this process, a nitrogen atom from propylamine, which acts as the catalytic moiety, engages in the formation of a covalent bond with a carbon atom from acetone, leading to the generation of a carbinolamine intermediate. This reaction is significantly influenced by the presence of silanol groups located on the surface of the amine-MSN, which contribute to the catalytic activity.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.
Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.
Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.