Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineering the energy levels of organic conducting materials can be useful for developing high-performance organic field-effect transistors (OFETs), whose electrodes must be well controlled to facilitate easy charge carrier transport from the source to drain through an active channel. However, symmetric source and drain electrodes that have the same energy levels are inevitably unfavorable for either charge injection or charge extraction. In this study, asymmetric source and drain electrodes are simply prepared using the electrohydrodynamic (EHD)-jet printing technique after the careful work function engineering of organic conducting material composites. Two types of additives effectively tune the energy levels of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate-based composites. These solutions are alternately patterned using the EHD-jet printing process, where the use of an electric field makes fine jet control that enables to directly print asymmetric electrodes. The asymmetric combination of EHD-printed electrodes helps in obtaining advanced charge transport properties in p-type and n-type OFETs, as well as their organic complementary inverters. This strategy is believed to provide useful guidelines for the facile patterning of asymmetric electrodes, enabling the desirable properties of charge injection and extraction to be achieved in organic electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c08683DOI Listing

Publication Analysis

Top Keywords

asymmetric electrodes
12
energy levels
12
source drain
12
organic conducting
8
drain electrodes
8
charge injection
8
ehd-jet printing
8
electrodes
7
charge
6
organic
6

Similar Publications

Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.

View Article and Find Full Text PDF

Achieving high capacitance while maintaining rapid charge transport and structural stability remains a major challenge in the design of battery-type supercapacitor electrodes. Herein, a molecularly engineered strategy is presented for constructing hierarchical hybrid electrodes by integrating petal-like NiCu-LDH nanosheets onto 3D HBC-x (x = H, F, OMe)-functionalized CNT paper via a one-step hydrothermal process. The incorporation of HBC effectively mitigates CNT agglomeration and constructs an interconnected conductive framework that enhances charge transport, shortens ion diffusion paths, and reduces internal resistance.

View Article and Find Full Text PDF

Electronic textiles are a transformative technology set to revolutionize next-generation wearable devices. However, a major challenge is making efficient yarn-based energy systems that power flexible wearables while blending seamlessly into textiles for unobstructed applications. Herein, 2D materials-coated yarn supercapacitors (YSCs) are designed, offering a promising solution through capacitance-matched electrode fabrication and a novel customizable riveted interconnection strategy for textile integration.

View Article and Find Full Text PDF

Thermally stable and highly wetted asymmetric porous nanocellulose/poly(m-phenylene isophthalamide) composite separators for high-performance lithium-ion batteries.

Int J Biol Macromol

September 2025

Jiangsu Provincial Key Lab for The Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Aramid films are potential separator candidates for high-safety lithium-ion batteries (LIBs) due to their inherent flame retardancy and outstanding thermal stability. However, both weak liquid electrolyte wettability and poor mechanical properties of aramid separators for lithium-ion batteries result in low ionic conductivity and unsatisfactory electrochemical performance for LIBs. Herein, a novel asymmetric porous composite separator composed of a relatively dense nanocellulose (CNC) layer and a porous poly(m-phenylene isophthalamide) (PMIA) supporting layer has been fabricated by using a water-induced phase conversion process.

View Article and Find Full Text PDF

Central post-stroke pain (CPSP) is an intractable neuropathic pain syndrome. Dual-target deep brain stimulation (DBS), which integrates sensory thalamic modulation and endogenous analgesic pathways, has emerged as a potential intervention; however, clinical evidence remains scarce. We report a 54-year-old woman who developed right-sided limb paresthesia progressing to persistent right hemibody pain following a left thalamic hemorrhage.

View Article and Find Full Text PDF