Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to explore the nature of the hydration and swelling of superabsorbent resin, a theoretical investigation into the cooperativity effect of the H-bonding interactions in the hydrates of four model compounds that can be regarded as the units of hydroquinone formaldehyde resin (HFR) (i.e., O-hydroxymethyl-1,4-dihydroxybenzene, methylene di-O-hydroxymethyl-1,4-dihydroxybenzene, p-hydroxy hydroxymethyl calix[4]arene and p-hydroxy hydroxymethyl calix[5]arene) was carried out by many-body interaction and density functional reactivity theory. The HFR···HO···HO complexes, in which the HO···HO moieties are bound with both the hydroxyl groups of HFR, are the most stable. For the HFR(HO) clusters, the interaction energy per building block is increased as the number of the size n increases, indicating the cooperativity effect. Therefore, a deduction is given that the cooperativity effects of the H-bonding interactions play an important role in the process of the hydration and swelling of HFR, and the swelling behavior is mainly attributed to the cooperativity effects which arised from the interactions between the HO molecules. The origin of the cooperativity effect was examined employing several information-theoretic quantities in the density functional reactivity theory. The degree of swelling of HFR was quantitated using a measure of volume. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-020-04442-0DOI Listing

Publication Analysis

Top Keywords

hydration swelling
12
h-bonding interactions
12
p-hydroxy hydroxymethyl
12
density functional
12
functional reactivity
12
reactivity theory
12
theoretical investigation
8
investigation cooperativity
8
cooperativity h-bonding
8
many-body interaction
8

Similar Publications

The development of mechanically robust, biocompatible, and biodegradable hydrogels remains a significant challenge for biomedical applications involving load-bearing soft tissues. Herein, a tubular lignin-derived hydrogel is engineered to assess its physicochemical, mechanical, and biological properties. Kraft and organosolv lignin are systematically compared at varying crosslinker concentrations to determine their effect on pore morphology, swelling behavior, and mechanical performance.

View Article and Find Full Text PDF

Evaluating the Long-term Effects of Microfocused Ultrasound on Facial Tightening Using Quantitative Instruments: Efficacy and Safety.

Aesthetic Plast Surg

September 2025

Department of Plastic Surgery, The First Affiliated Hospital, Jinan University, No. 613 West, Huangpu Avenue, Guangzhou, 510630, Guangdong Province, China.

Background: Microfocused ultrasound (MFU) is a non-invasive technique used for facial rejuvenation, yet there is limited quantitative data on its long-term effects. This study aimed to evaluate the long-term efficacy and safety of MFU for facial rejuvenation. We utilized standardized photography along with advanced skin assessment technologies to analyze the impact of MFU on facial morphology, skin function, and patient satisfaction over a 12-month period.

View Article and Find Full Text PDF

Bilayered chitosan scaffolds: a novel approach to mimicking native skin architecture.

Biomed Mater

September 2025

Department of Nanobiotechnology, Faculty of Biological Sciences, , Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran, Tehran, Tehran Province, 14115-154, Iran (the Islamic Republic of).

It is essential to develop new strategies for wound treatment and skin reconstruction, particularly by scaffolds that replicate the structure and function of native skin. A bilayer scaffold was developed using three-dimensional (3D) bioprinting, based on a uniform chitosan-based formulation for both layers, maintaining material uniformity while offering structural support and promoting cell adhesion. The upper chitosan layer, embedded with NHEK-Neo, is stiffer and mimics the epidermis, while the softer lower layer contains embedded HFFs and HFSCs, mimicking the dermis.

View Article and Find Full Text PDF

Breaking through Hydration Layer Barrier: a Novel Ultra-Strong Underwater Hydrogel Adhesive Toward Full-Thickness Cartilage Repair.

Adv Healthc Mater

September 2025

Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

The absence of blood vessels and nerves in cartilage severely restricts its self-healing capacity. Meanwhile, the inherent anti-adhesive nature of articular cartilage matrix further complicates the integration of implanted scaffolds, leading to common issues such as scaffold displacement, reduced mechanical stability, impaired cell migration, and insufficient tissue regeneration. These challenges collectively render articular cartilage repair a formidable global issue.

View Article and Find Full Text PDF

Corneal intrastromal silicone injection in severe corneal decompensation as a last resort for pain management: A case series.

J Fr Ophtalmol

August 2025

Department of Ophthalmology, Rothschild Foundation, 25, rue Manin, 75019 Paris, France.

Purpose: To describe a surgical approach to treating painful bullous keratopathy using an intracorneal silicone bubble in patients with poor visual potential.

Methods: Two eyes of two patients with painful bullous keratopathy are presented in this paper. The surgical technique consists of two steps.

View Article and Find Full Text PDF