98%
921
2 minutes
20
Fabrication of heterostructures by merging two or more materials in a single object. The domains at the nanoscale represent a viable strategy to purposely address materials' properties for applications in several fields such as catalysis, biomedicine, and energy conversion. In this case, solution-phase seeded growth and the hot-injection method are ingeniously combined to fabricate TiO/PbS heterostructures. The interest in such hybrid nanostructures arises from their absorption properties that make them advantageous candidates as solar cell materials for more efficient solar light harvesting and improved light conversion. Due to the strong lattice mismatch between TiO and PbS, the yield of the hybrid structure and the control over its properties are challenging. In this study, a systematic investigation of the heterostructure synthesis as a function of the experimental conditions (such as seeds' surface chemistry, reaction temperature, and precursor concentration), its topology, structural properties, and optical properties are carried out. The morphological and chemical characterizations confirm the formation of small dots of PbS by decorating the oleylamine surface capped TiO nanocrystals under temperature control. Remarkably, structural characterization points out that the formation of heterostructures is accompanied by modification of the crystallinity of the TiO domain, which is mainly ascribed to lattice distortion. This result is also confirmed by photoluminescence spectroscopy, which shows intense emission in the visible range. This originated from self-trapped excitons, defects, and trap emissive states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356616 | PMC |
http://dx.doi.org/10.3390/molecules25122939 | DOI Listing |
Acc Chem Res
September 2025
Division of Materials and Manufacturing Science, Graduate School of Engineering, The University of Osaka, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
ConspectusHydrogen spillover, the simultaneous diffusion of protons and electrons, has recently emerged as a key phenomenon in the functionalization of hydrogen in cutting-edge research fields. Its occurrence has been found to significantly impact hydrogen-related fields of science, such as catalysis, reduction, and hydrogen storage. Since the discovery of hydrogen spillover more than half a century ago, although many scientists have reported its unique properties and have attempted to utilize them, no practical advanced applications have been established yet.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Sevastopol, Russia.
The emergence of new types of pollutants and the increase of anthropogenic load on the environment provoked an increased interest of researchers to study the toxic effects of pollutants on living organisms. This study is devoted to investigate the physiological response of the Black Sea phytoplankton community to the effects of ZnO, CuO and TiO nanoparticles (NPs) of different concentrations by creating in vitro model microcosms. Trends of changes in the ratio between phytoplankton groups (cyanobacteria-picoeukaryotic algae-nano-microphytoplankton), species composition, growth rates and functional state of cells under the influence of the studied nanoparticles were revealed.
View Article and Find Full Text PDFToxicon
September 2025
Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.
Titanium dioxide nanoparticles (TiO-NPs) are used in the production of various industrial and commercial products and reported to cause neurotoxicity in Sprague Dawley rats. Fortunellin (FRN) is a potent flavonoid with diverse biological properties. This research experiment was performed to explore the protective role FRN against TiO-NPs induced brain damage.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Public Health, Guizhou Medical University, Guiyang, China. Electronic address:
The increasing use of titanium dioxide (TiO) nanoparticles (NPs) has raised concerns related to their environmental accumulation and the associated ecological risks. Understanding the key biomolecular responses of TiO₂ NP-tolerant organisms like Physarum flavicomum GD217 is essential for combating the pollution of and exposure to these NPs. In this study, we employed multi-omics approaches combined with molecular biology techniques to investigate the stress responses of GD217 to mixed-phase TiO₂ NPs (M-TiO₂ NPs).
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Faculty of Medicine, Pharmacy and Prevention, Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy. Electronic address:
Titanium dioxide nanoparticles (TiO NPs) are well suited for cosmetics and polymer films because they efficiently absorb UV light while remaining transparent to visible light. Their widespread use requires strategies for managing potential human and environmental risks. Implementing the Safe and Sustainable by Design (SSbD) methodology to advanced chemicals and materials is a major global challenge and a concept that is included in several EU research projects.
View Article and Find Full Text PDF