98%
921
2 minutes
20
Despite the potential of nanodevices for intelligent drug delivery, it remains challenging to develop controllable therapeutic devices with high spatial-temporal selectivity. Here, we report a DNA nanodevice that can achieve tumor recognition and treatment with improved spatiotemporal precision under the regulation of orthogonal near-infrared (NIR) light. The nanodevice is built by combining an ultraviolet (UV) light-activatable aptamer module and a photosensitizer (PS) with up-conversion nanoparticle (UCNP) that enables the operation of the nanodevice with deep tissue-penetrable NIR light. The UCNPs can convert two distinct NIR excitations into orthogonal UV and green emissions for programmable photoactivation of the aptamer modules and PSs, respectively, allowing spatiotemporally controlled target recognition and photodynamic antitumor effect. Furthermore, when combined with immune checkpoint blockade therapy, the nanodevice results in regression of untreated distant tumors. This work provides a new approach for regulation of diagnostic and therapeutic activity at the right time and place.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299621 | PMC |
http://dx.doi.org/10.1126/sciadv.aba9381 | DOI Listing |
Nano Lett
September 2025
School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
Dynamic DNA nanotechnology creates programmable reaction networks and nanodevices by using DNA strands. The key reaction in dynamic DNA nanotechnology is the exchange of DNA strands between different molecular species, achieved through three- and four-way strand exchange reactions. While both reactions have been widely used, the four-way exchange reaction has traditionally been slower and less efficient than the three-way reaction.
View Article and Find Full Text PDFMed Oncol
September 2025
Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt.
Pancreatic cancer is among the most lethal forms of cancer, with a five-year survival rate under 7%, primarily due to its late clinical presentation and rapid disease progression. Although the oncogenic development of pancreatic tumors can span over a decade, early diagnosis remains a major clinical challenge, as current diagnostic approaches-including imaging modalities and blood-based markers like CA19-9-lack the requisite sensitivity for detecting early-stage disease. Liquid biopsy has emerged as a promising, non-invasive diagnostic technique by enabling the detection of circulating tumor-specific nucleic acids, particularly circulating tumor DNA (ctDNA) and microRNAs (miRNAs).
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010020, China.
MicroRNAs (miRNAs) play a critical role in early cancer detection, but traditional DNA probes are limited by the low abundance of miRNAs and their "always effective" property. Herein, we construct a photocaged amplified DNA nanodevice (PAD) by attaching DNA probes to upconversion nanoparticles (UCs). Upon remote near-infrared (NIR) light stimulation, the photocleavable DNA probes are activated by emitted UV light, and subsequently triggered by target miRNA.
View Article and Find Full Text PDFJACS Au
August 2025
School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.
The ability to selectively control DNA conformation using light as an external stimulus offers unique opportunities to control specific DNA sequences in biological settings and to develop nucleotide-based nanodevices. We describe a duplex/G-quadruplex (G4) junction-binding chemotype derived from a cyclic azobenzene core that reversibly photoswitches between and isomers, mediated exclusively by visible light under physiological conditions. We demonstrate the selective binding of the elongated conformation, with over 50-fold higher affinity, toward LTR-III G4 (an important HIV-1 sequence), and show that binding and dissociation from the LTR-III G4 can be controlled reversibly by alternate irradiation with low-intensity blue and green light.
View Article and Find Full Text PDFChembiochem
August 2025
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517619, India.
Ion dynamics within cellular organelles are fundamental to numerous biochemical processes, maintaining homeostasis and enabling critical cellular functions. Despite continuous ion movement across organelle membranes, stable ionic gradients are preserved, creating optimal microenvironments for organelle-specific activities such as ATP production in mitochondria, lysosomal degradation, Golgi-mediated protein modifications, and DNA processing in the nucleus. These gradients are regulated by specialized membrane proteins, including ion channels and transporters, which facilitate selective and controlled ion flux.
View Article and Find Full Text PDF