98%
921
2 minutes
20
Purpose: To demonstrate temporal lobe necrosis (TLN) rate and clinical/dose-volume factors associated with TLN in radiation-naïve patients with head and neck cancer treated with proton therapy where the field of radiation involved the skull base.
Materials And Methods: Medical records and dosimetric data for radiation-naïve patients with head and neck cancer receiving proton therapy to the skull base were retrospectively reviewed. Patients with <3 months of follow-up, receiving <45 GyRBE or nonconventional fractionation, and/or no follow-up magnetic resonance imaging (MRI) were excluded. TLN was determined using MRI and graded using Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Clinical (gender, age, comorbidities, concurrent chemotherapy, smoking, radiation techniques) and dose-volume parameters were analyzed for TLN correlation. The receiver operating characteristic curve and area under the curve (AUC) were performed to determine the cutoff points of significant dose-volume parameters.
Results: Between 2013 and 2019, 234 patients were included. The median follow-up time was 22.5 months (range = 3.2-69.3). Overall TLN rates of any grade, ≥ grade 2, and ≥ grade 3 were 5.6% (N = 13), 2.1%, and 0.9%, respectively. The estimated 2-year TLN rate was 4.6%, and the 2-year rate of any brain necrosis was 6.8%. The median time to TLN was 20.9 months from proton completion. Absolute volume receiving 40, 50, 60, and 70 GyRBE (absolute volume [aV]); mean and maximum dose received by the temporal lobe; and dose to the 0.5, 1, and 2 cm volume receiving the maximum dose (D0.5cm, D1cm, and D2cm, respectively) of the temporal lobe were associated with greater TLN risk while clinical parameters showed no correlation. Among volume parameters, aV50 gave maximum AUC (0.921), and D2cm gave the highest AUC (0.935) among dose parameters. The 11-cm cutoff value for aV50 and 62 GyRBE for D2cm showed maximum specificity and sensitivity.
Conclusion: The estimated 2-year TLN rate was 4.6% with a low rate of toxicities ≥grade 3; aV50 ≤11 cm, D2cm ≤62 GyRBE and other cutoff values are suggested as constraints in proton therapy planning to minimize the risk of any grade TLN. Patients whose temporal lobe(s) unavoidably receive higher doses than these thresholds should be carefully followed with MRI after proton therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302730 | PMC |
http://dx.doi.org/10.14338/IJPT-20-00014.1 | DOI Listing |
J Biomed Sci
September 2025
Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.
View Article and Find Full Text PDFEur J Orthop Surg Traumatol
September 2025
Department of Orthopaedics, Jupiter Hospital, Thāne, India.
We aim to describe an approach for reducing the posteriorly dislocated humeral head through the rotator interval via a deltopectoral approach that is frequently utilized for internal fixation of proximal humerus fractures and fracture dislocations. The sheath of the long head of biceps (LHB) and the rotator interval capsule are opened till the glenoid; this enables access to the glenohumeral joint via the rotator interval. A long-handle Cobb elevator is introduced through the rotator interval and, under intraoperative imaging, advanced posteromedially to the dislocated humeral head.
View Article and Find Full Text PDFNature
September 2025
Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.
View Article and Find Full Text PDFNature
September 2025
Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.
View Article and Find Full Text PDFJ Orthop Sci
September 2025
Department of Orthopaedic Surgery, NHO Saga Hospital, 1-20-1 Hinode, Saga 849-0923, Japan.
Background: Hounsfield units (HU) on computed tomography (CT) are strongly correlated with bone mineral density (BMD) and may aid in osteoporosis screening. However, there is no standardized method for assessing bone density in displaced femoral head fractures. This study aimed to measure HU values in the femoral head using preoperative post-fracture CT images of patients with intertrochanteric femoral fractures and investigate whether it correlated with BMD measured by dual-energy X-ray absorptiometry (DXA).
View Article and Find Full Text PDF