Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The role of ion channels in neurons and muscles has been well characterized. However, recent work has demonstrated both the presence and necessity of ion channels in diverse cell types for morphological development. For example, mutations that disrupt ion channels give rise to abnormal structural development in species of flies, frogs, fish, mice, and humans. Furthermore, medications and recreational drugs that target ion channels are associated with higher incidence of birth defects in humans. In this review we establish the effects of several teratogens on development including epilepsy treatment drugs (topiramate, valproate, ethosuximide, phenobarbital, phenytoin, and carbamazepine), nicotine, heat, and cannabinoids. We then propose potential links between these teratogenic agents and ion channels with mechanistic insights from model organisms. Finally, we talk about the role of a particular ion channel, Kir2.1, in the formation and development of bone as an example of how ion channels can be used to uncover important processes in morphogenesis. Because ion channels are common targets of many currently used medications, understanding how ion channels impact morphological development will be important for prevention of birth defects. It is becoming increasingly clear that ion channels have functional roles outside of tissues that have been classically considered excitable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296152PMC
http://dx.doi.org/10.3389/fnmol.2020.00099DOI Listing

Publication Analysis

Top Keywords

ion channels
36
morphological development
12
ion
11
channels
9
ion channel
8
role ion
8
birth defects
8
development
7
channel contributions
4
contributions morphological
4

Similar Publications

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Unveiling Ion-Transport Dynamics in 2D Nanofluidic Anion-Selective Membranes toward Osmotic Energy Harvesting.

Nano Lett

September 2025

State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.

View Article and Find Full Text PDF

Comparing abstraction and exchange channels in the H + HBr reaction: A stereodynamical control perspective.

J Chem Phys

September 2025

Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.

This study investigates the stereodynamical control of the H + HBr (v = 0, j = 1) reaction within 0.01-1.50 eV collision energy using the time-dependent wave packet method.

View Article and Find Full Text PDF

Voltage-gated K channels of the Kv2 family coassemble with electrically silent KvS subunits in specific subpopulations of brain neurons, forming heteromeric Kv2/KvS channels with distinct functional properties. Little is known about the composition and function of Kv2 channels in spinal cord neurons, however. Here, we show that while Kv2.

View Article and Find Full Text PDF

Glucocorticoid Alleviates Stress-induced Hypothalamic Nerve Injury by Inhibiting the GSDMD-dependent Pyroptosis Pathway.

J Integr Neurosci

August 2025

Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, 453003 Xinxiang, Henan, China.

Background: Excessive stress leads to stress injury but the underlying mechanism is not completely understood and current preventive protocols are inadequate. This study aimed to investigate if glucocorticoid (GC) reduces nerve damage in the hypothalamus caused by stress and to clarify the mechanisms involved.

Methods: Behavioral alterations in stressed rats were observed using the open field test.

View Article and Find Full Text PDF