98%
921
2 minutes
20
Reported herein is the use of aryls as axial ligands to manipulate reactivity at the distal metal site through metal-metal-ligand interactions in diruthenium paddlewheel complexes. The vacant ruthenium site in Ru(ap)(Ar) (; ap = 2-anilinopyridinate and Ar = CH-4-NMe), thus rendered reactive, is able to bind a series of isoelectronic ligands to afford three complexes of the form (Y)[Ru(ap)](Ar) [Y = CN (), HC≡C (), CO ()], each of which exhibits a distinct electronic structure. While reactions with anionic ligands subsequently result in oxidation of the diruthenium core from Ru(II,III) to Ru(III,III), the reaction with CO yields a rare example of a Ru(II,III)-CO adduct. The latter reaction is particularly interesting in its completely reversible change of the ground state from = / in to = / in , the first of its kind seen in Ru(II,III) species. In general, this work sheds light on the modulation of the electronic structure of diruthenium paddlewheel complexes using distinct coordination environments around each of the ruthenium centers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c01755 | DOI Listing |
PLoS One
September 2025
Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China.
Background: Ankylosing spondylitis (AS), a chronic inflammatory disorder affecting axial joints, is frequently complicated by uveitis. However, the molecular mechanisms linking AS to secondary uveitis remain poorly understood.
Methods: We integrated transcriptomic datasets from AS (GSE73754) and uveitis (GSE194060) cohorts to identify shared molecular pathways.
Acta Crystallogr E Crystallogr Commun
September 2025
College of Materials Science and Opto-electronic Technology University of Chinese Academy of Sciences, Huairou Beijing 101408 People's Republic of China.
The title complex, [Fe(CHN)(CHN)]·3CH, possesses inversion symmetry with the iron(II) atom located on a center of symmetry. The metal atom is coordinated in a symmetric octa-hedral geometry by four pyrrole N atoms of the porphyrin ligand in the equatorial plane and two N atoms of 1-methyl-imidazole ligands in the axial sites; the complex crystallizes with three toluene solvent mol-ecules. The average Fe-N (N is a porphyrin N atom) bond length is 1.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 9808578, Japan.
Phosphorus(V)-centered porphyrins (P(V)-porphyrins) are an important class of functional dyes in many fields of research, and axial ligands on the phosphorus atom affect the electronic properties of P(V)-porphyrins and add functions. Herein, we report on the synthesis and characterization of a hitherto unknown P(V)-porphyrin having hydrogen atoms as axial ligands (1·PF , PF is a counter anion). Synthesis of 1·PF was achieved by treatment of dichloro-derivative (2·Cl) with LiAlH followed by AgPF via hydride reduction accompanied by one-electron reduction and one-electron oxidation.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China.
Axial ligand engineering is a promising strategy to enhance the performance of single-atom catalysts (SACs) in electrocatalysis. However, a single non-metallic axial coordination atom linked to monolayer SACs (MSACs) often exhibits insufficient stability. In this work, we designed a series of bilayer SACs (BSACs) with vertically stacked FeN and MN (M = Sc-Zn) layers bridged by axial non-metallic atoms (C, N, O, P, S, and Se).
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
The nominally trigonal, pseudo-Jahn-Teller (PJT)-active, = 1/2 N-bound complexes, , M = Fe, Co, with three in-plane phosphine ligands and axial donors, E = Si, B, C, include functional nitrogenase models that catalyze the reduction of N to NH. We applied EPR, P ENDOR spectroscopy, and DFT computations to characterize the PJT-induced distortions of four selected , revealing how the metal ion and axial ligand E together tune both PJT dynamics, as revealed by P ENDOR and N activation, as indicated by a decrease in N≡N stretching frequency, ν(N≡N). , and each exhibit a single P isotropic hyperfine coupling, revealing dynamic pseudorotation of the PJT distortion, producing averaged symmetry with equivalent phosphine ligands.
View Article and Find Full Text PDF