A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

TaSPL13 regulates inflorescence architecture and development in transgenic wheat (Triticum aestivum L.). | LitMetric

TaSPL13 regulates inflorescence architecture and development in transgenic wheat (Triticum aestivum L.).

Plant Sci

The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, the Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China. Electronic addr

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The SQUAMOSA promoter-binding protein-like (SPL) proteins play vital roles in plant growth and development in rice (Oryza sative L.) and Arabidopsis thaliana (L.) Heynh. However, few studies regarding the SPL proteins have been reported in wheat. In this study, 56 TaSPLs were clustered into eight groups according to an OsSPL phylogenetic comparison analysis. The expression patterns of TaSPLs in different tissues were analysed by RNA-seq data, and partial results were confirmed by qRT-PCR. Based on the above results, genes such as TaSPL13 and TaSPL15 may be involved in spike or seed development in wheat. Multiple genes that regulate the inflorescence architecture of rice have been identified. Additionally, studies on the genes associated with spikelet development in wheat have been reported relatively rarely. Here, TaSPL13-2B was transferred into wheat cv. Bobwhite. Compared with the wild type, the transgenic lines showed significant increases in the number of florets and grains per spike, indicating that TaSPL13-2B could influence the floret development of wheat. TaSPL13-2B was transferred into rice cv. Nipponbare, which demonstrated that TaSPL13-2B can modify panicle architecture in transgenic rice, with significant increases in panicle length, the number and length of primary branches, and the number of secondary branches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2020.110516DOI Listing

Publication Analysis

Top Keywords

development wheat
12
inflorescence architecture
8
spl proteins
8
taspl13-2b transferred
8
wheat
6
development
5
taspl13 regulates
4
regulates inflorescence
4
architecture development
4
development transgenic
4

Similar Publications