Studies of selenium and arsenic mutual protection in human HepG2 cells.

Chem Biol Interact

Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton

Published: August 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hundreds of millions of people worldwide are exposed to unacceptable levels of carcinogenic inorganic arsenic. Animal models have shown that selenium and arsenic are mutually protective through the formation and elimination of the seleno-bis(S-glutathionyl) arsinium ion [(GS)AsSe]. Consistent with this, human selenium deficiency in arsenic-endemic regions is associated with arsenic-induced disease, leading to the initiation of human selenium supplementation trials. In contrast to the protective effect observed in vivo, in vitro studies have suggested that selenite increases arsenite cellular retention and toxicity. This difference might be explained by the rapid conversion of selenite to selenide in vivo. In the current study, selenite did not protect the human hepatoma (HepG2) cell line against the toxicity of arsenite at equimolar concentrations, however selenide increased the IC by 2.3-fold. Cytotoxicity assays of arsenite + selenite and arsenite + selenide at different molar ratios revealed higher overall mutual antagonism of arsenite + selenide toxicity than arsenite + selenite. Despite this protective effect, in comparison to Se-selenite, HepG2 cells in suspension were at least 3-fold more efficient at accumulating selenium from reduced Se-selenide, and its accumulation was further increased by arsenite. X-ray fluorescence imaging of HepG2 cells also showed that arsenic accumulation, in the presence of selenide, was higher than in the presence of selenite. These results are consistent with a greater intracellular availability of selenide relative to selenite for protection against arsenite, and the formation and retention of a less toxic product, possibly [(GS)AsSe].

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2020.109162DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
12
selenium arsenic
8
human selenium
8
selenite
5
studies selenium
4
arsenic
4
arsenic mutual
4
mutual protection
4
human
4
protection human
4

Similar Publications

Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.

View Article and Find Full Text PDF

The valine catabolite 3-hydroxyisobutyrate (3-HIB) is suggested to mediate the uptake of extracellular fatty acids into the cells, thus regulating intracellular lipid metabolism, although the direct mechanism remains unclear. In this study, we assessed the effects of long-term 3-HIB treatment on the development and progression of complex atherosclerotic lesions, lipid metabolism and liver injury in vivo in ApoE-/- mouse model fed Western Diet (WD). Results show that 3-HIB treatment is associated with a significant reduction in weight and serum lipid content, reduced aortic mean plaque area and improvement of liver functions.

View Article and Find Full Text PDF

The Indo-Himalayan region (IHR) is a biodiversity hotspot, home to numerous endangered medicinal plants, including Saussurea costus, a critically endangered species known for its therapeutic properties. This study aimed to standardize the extraction of bioactive compounds from S. costus roots using supercritical fluid extraction and stabilize the extracts through freeze-drying.

View Article and Find Full Text PDF

A series of novel matrine derivatives incorporating thiosemicarbazide moieties was designed and synthesized. The in vitro cytotoxicity of these compounds was evaluated against four human cancer cell lines: MCF-7, HepG2, SGC-7901, and A549. Results demonstrated that their cytotoxic activity was significantly higher than that of matrine.

View Article and Find Full Text PDF

Hyperlipidemia is a common chronic disease characterized by elevated levels of lipids in the blood. There is some evidence that suggests that berberine (BBR) might be beneficial for the treatment of hyperlipidemia. However, its low intestinal bioavailability limits its potential therapeutic action.

View Article and Find Full Text PDF