Minerals loaded with oxygen nanobubbles mitigate arsenic translocation from paddy soils to rice.

J Hazard Mater

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. Electronic address:

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inhibiting reductive transformation of arsenic (As) in flooded paddy soils is fundamentally important for mitigating As transfer into the food chain. In this study, oxygen-nanobubble-loaded-zeolites (ZON) and -vermiculites (VON) were tested as a novel approach for supplying oxygen to paddy soils to inhibit As influx into rice. The dynamic physio- and bio-chemical variations in the rhizosphere and bulk soil were profiled in a rhizobox experiment. Upon adding ZON and VON, the redox potential and dissolved oxygen consistently increased throughout the cultivation period. The improved redox environment inhibited As(III) release into porewater and increased As(V) adsorbed on crystalline Fe (hydr)oxides, following the reduction of arsC and arrA gene abundances and enhancement of the aioA gene. Moreover, adding ZON and VON promoted root iron plaque formation, which increased As retention on iron plaque. Both ZON and VON treatments mitigated As translocation from soil to rice, meanwhile increasing root and shoot biomass. ZON was superior to VON in repressing As transfer and promoting rice growth due to its higher oxygen loading capacity. This study provides a novel and environment-friendly material to both mitigate the As translocation from paddy soil to rice and improve rice growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122818DOI Listing

Publication Analysis

Top Keywords

paddy soils
12
zon von
12
translocation paddy
8
adding zon
8
iron plaque
8
soil rice
8
rice growth
8
rice
6
zon
5
von
5

Similar Publications

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

Fe-modified biochar-driven ROS generation in the rhizosphere and their role in microplastic transformation.

J Hazard Mater

September 2025

State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation

Reactive oxygen species (ROS) are critical mediators of soil biogeochemical processes. While the production of ROS with biochar (BC) in the rhizosphere has not been explored. We demonstrate that BC and Fe-modified biochar (FeBC), prepared at 400°C and 600°C, influence ROS generation in paddy soil containing biodegradable (polybutylene succinate: PBS) and conventional (polystyrene) microplastics (MPs).

View Article and Find Full Text PDF

Elevated salinity amplifies polyethylene microplastic-induced soil nitrous oxide emissions.

J Hazard Mater

August 2025

Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; State Key Laboratory of Green and Efficient Development of

Microplastics (MPs) have been shown to enhance nitrous oxide (NO) emissions and soil salinization potentially amplifying this effect. This study investigated the individual and combined impacts of polyethylene (PE) MPs and salinity on NO emissions from paddy soils, while simultaneously analyzing related microbial parameters. MPs significantly increased cumulative NO emissions by 9.

View Article and Find Full Text PDF

Integration of diverse fertilisation strategies with water-saving irrigation techniques presents a promising sustainable agricultural practice, offering the potential to reduce greenhouse gases (GHGs) emissions, enhance carbon sequestration and boost crop yields. However, existing research on the influence of soil microorganisms on biogeochemical processes of GHGs is limited. Herein, we explored the microbial mechanisms influencing GHGs emissions through a 3-year field experiment and metagenomic sequencing conducted in southeastern China.

View Article and Find Full Text PDF

Environmental remediation strategies for cadmium (Cd)-contaminated rice paddies often face challenges due to reliance on time-consuming field trials and limited pre-assessment of intervention efficacy. Here, we propose a machine learning and causal inference-integrated framework to enable proactive decision-making, using iron plaque-mediated Cd immobilization as a model system. By analyzing 76 paired soil-rice samples, extreme gradient boosting (XGBoost) and SHapley Additive exPlanations (SHAP) identified six critical drivers of grain Cd accumulation from 31 physicochemical and microbial indicators.

View Article and Find Full Text PDF